Skip to main content

Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi

Publication ,  Journal Article
Zheng, T; Bergin, MH; Sutaria, R; Tripathi, SN; Caldow, R; Carlson, DE
Published in: Atmos. Meas. Tech. Discuss.
2019

Duke Scholars

Published In

Atmos. Meas. Tech. Discuss.

Publication Date

2019

Start / End Page

1 / 28
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., Caldow, R., & Carlson, D. E. (2019). Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi. Atmos. Meas. Tech. Discuss., 1–28.
Zheng, Tongshu, Michael H. Bergin, Ronak Sutaria, Sachchida N. Tripathi, Robert Caldow, and David E. Carlson. “Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi.” Atmos. Meas. Tech. Discuss., 2019, 1–28.
Zheng T, Bergin MH, Sutaria R, Tripathi SN, Caldow R, Carlson DE. Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi. Atmos Meas Tech Discuss. 2019;1–28.
Zheng T, Bergin MH, Sutaria R, Tripathi SN, Caldow R, Carlson DE. Gaussian Process regression model for dynamically calibrating a wireless low-cost particulate matter sensor network in Delhi. Atmos Meas Tech Discuss. 2019;1–28.

Published In

Atmos. Meas. Tech. Discuss.

Publication Date

2019

Start / End Page

1 / 28