Fault-tolerant weighted union-find decoding on the toric code
Quantum error correction requires decoders that are both accurate and efficient. To this end, union-find decoding has emerged as a promising candidate for error correction on the surface code. In this work, we benchmark a weighted variant of the union-find decoder on the toric code under circuit-level depolarizing noise. This variant preserves the almost-linear time complexity of the original while significantly increasing the performance in the fault-tolerance setting. In this noise model, weighting the union-find decoder increases the threshold from 0.38% to 0.62%, compared to an increase from 0.65% to 0.72% when weighting a matching decoder. Further assuming quantum nondemolition measurements, weighted union-find decoding achieves a threshold of 0.76% compared to the 0.90% threshold when matching. We additionally provide comparisons of timing as well as low error rate behavior.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 34 Chemical sciences