Kenneth R Brown
Michael J. Fitzpatrick Distinguished Professor of Engineering
Prof. Brown's research interest is the control of quantum systems for both understanding the natural world and developing new technologies. His current research areas are the development of robust quantum computers and the study of molecular properties at cold and ultracold temperatures.
Current Research Interests
Quantum error correction, quantum control, quantum computer architecture, ion trap quantum computing, and the spectroscopy of sympathetically cooled molecular ions
Current Appointments & Affiliations
- Michael J. Fitzpatrick Distinguished Professor of Engineering, Electrical and Computer Engineering, Pratt School of Engineering 2021
- Professor in the Department of Electrical and Computer Engineering, Electrical and Computer Engineering, Pratt School of Engineering 2021
- Professor of Physics, Physics, Trinity College of Arts & Sciences 2021
- Professor of Chemistry, Chemistry, Trinity College of Arts & Sciences 2021
Contact Information
- 701 W Main St, Suite 400, Durham, NC 27701
-
kenneth.r.brown@duke.edu
(919) 660-1376
-
Brown Lab
- Background
-
Education, Training, & Certifications
- Ph.D., University of California - Berkeley 2003
- B.S., University of Puget Sound 1998
-
Previous Appointments & Affiliations
- Associate Professor of Chemistry, Chemistry, Trinity College of Arts & Sciences 2018 - 2021
- Associate Professor in the Department of Electrical and Computer Engineering, Electrical and Computer Engineering, Pratt School of Engineering 2018 - 2020
- Associate Professor of Physics, Physics, Trinity College of Arts & Sciences 2020
- Associate Professor of Physics, Physics, Trinity College of Arts & Sciences 2018 - 2020
- Adjunct Associate Professor in the Department of Electrical and Computer Engineering, Electrical and Computer Engineering, Pratt School of Engineering 2017
-
Academic Positions Outside Duke
- Associate Professor of Chemistry and Biochemistry and Computational Science and Engineering, Georgia Institute of Technology. 2013 - 2017
- Assistant Professor of Chemistry and Biochemistry and Computational Science and Engineering, Georgia Institute of Technology. 2007 - 2013
- Recognition
-
In the News
-
MAY 18, 2022 -
OCT 15, 2021 Pratt School of Engineering -
SEP 7, 2021 Pratt School of Engineering -
NOV 12, 2020 -
JUN 26, 2019 Pratt School of Engineering -
AUG 7, 2018 Pratt School of Engineering -
APR 16, 2018 Pratt School of Engineering
-
-
Awards & Honors
- Research
-
Selected Grants
- QLCI - CI: Institute for Robust Quantum Simulation awarded by University of Maryland, College Park 2021 - 2026
- Comparing molecular ions and atomic ions for quantum information processing and quantum sensing awarded by Army Research Office 2021 - 2025
- Simplifying quantum characterization through physical symmetries, machine learning, and a top-down approach, awarded by Army Research Office 2020 - 2024
- PFCQC: STAQ: Software-Tailored Architecture for Quantum co-design awarded by National Science Foundation 2018 - 2024
- Quantum control based on real-time environment analysis by spectator qubits awarded by Army Research Office 2018 - 2024
- Quantum Scientific Computing Open User Testbed awarded by Sandia National Laboratories 2019 - 2023
- Quantum-hardware focused application performance benchmarks awarded by Department of Energy 2018 - 2023
- MRI: Development of a Programmable Ion-Trap Quantum Computer awarded by National Science Foundation 2018 - 2023
- Collaborative Research: EPiQC:Enabling Practical-Scale Quantum Computation awarded by National Science Foundation 2018 - 2023
- Quantum Computing in Chemical and Material Sciences awarded by Department of Energy 2018 - 2022
- Scaling Modular and Reconfigurable Quantum Systems awarded by University of Maryland 2018 - 2021
- Control and Spectroscopy of Single Molecular Ions awarded by Army Research Office 2018 - 2021
- Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions awarded by Georgia Institute of Technology 2018 - 2020
- Workshop on Research Themes in Quantum Information in the United States and Europe awarded by National Science Foundation 2019 - 2020
-
External Relationships
- Alphabet Inc
- IonQ, Inc.
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Jia, Zhubing, et al. “Determination of Multimode Motional Quantum States in a Trapped Ion System.” Physical Review Letters, vol. 129, no. 10, Sept. 2022, p. 103602. Epmc, doi:10.1103/physrevlett.129.103602.Full Text
-
Zhang, B., et al. “Hidden Inverses: Coherent Error Cancellation at the Circuit Level.” Physical Review Applied, vol. 17, no. 3, Mar. 2022. Scopus, doi:10.1103/PhysRevApplied.17.034074.Full Text
-
Chen, T., et al. “Stable Turnkey Laser System for a Yb/Ba Trapped-Ion Quantum Computer.” Ieee Transactions on Quantum Engineering, vol. 3, Jan. 2022. Scopus, doi:10.1109/TQE.2022.3195428.Full Text
-
Wellers, C., et al. “Controlled preparation and vibrational excitation of single ultracold molecular hydrogen ions.” Molecular Physics, vol. 120, no. 19–20, Jan. 2022. Scopus, doi:10.1080/00268976.2021.2001599.Full Text
-
Brown, K. R., et al. “Materials challenges for trapped-ion quantum computers.” Nature Reviews Materials, vol. 6, no. 10, Oct. 2021, pp. 892–905. Scopus, doi:10.1038/s41578-021-00292-1.Full Text
-
Egan, Laird, et al. “Fault-tolerant control of an error-corrected qubit.” Nature, vol. 598, no. 7880, Oct. 2021, pp. 281–86. Epmc, doi:10.1038/s41586-021-03928-y.Full Text Open Access Copy
-
Huang, S., and K. R. Brown. “Constructions for measuring error syndromes in Calderbank-Shor-Steane codes between Shor and Steane methods.” Physical Review A, vol. 104, no. 2, Aug. 2021. Scopus, doi:10.1103/PhysRevA.104.022429.Full Text
-
Huang, Shilin, and Kenneth R. Brown. “Between Shor and Steane: A Unifying Construction for Measuring Error Syndromes.” Physical Review Letters, vol. 127, no. 9, Aug. 2021, p. 090505. Epmc, doi:10.1103/physrevlett.127.090505.Full Text
-
Nguyen, N. H., et al. “Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer.” Physical Review Applied, vol. 16, no. 2, Aug. 2021. Scopus, doi:10.1103/PhysRevApplied.16.024057.Full Text
-
Zhang, Bichen, et al. “Hidden Inverses: Coherent Error Cancellation at the Circuit Level.” Phys. Rev. Applied, vol. 17, Apr. 2021, p. 034074.Link to Item
-
Altman, E., et al. “Quantum Simulators: Architectures and Opportunities.” Prx Quantum, vol. 2, no. 1, Jan. 2021. Scopus, doi:10.1103/PRXQuantum.2.017003.Full Text
-
Nam, Y., et al. “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer.” Npj Quantum Information, vol. 6, no. 1, Dec. 2020. Scopus, doi:10.1038/s41534-020-0259-3.Full Text
-
Wang, Ye, et al. “High-Fidelity Two-Qubit Gates Using a Microelectromechanical-System-Based Beam Steering System for Individual Qubit Addressing.” Physical Review Letters, vol. 125, no. 15, American Physical Society (APS), Oct. 2020. Crossref, doi:10.1103/physrevlett.125.150505.Full Text
-
Brown, N. C., et al. “Critical faults of leakage errors on the surface code.” Proceedings Ieee International Conference on Quantum Computing and Engineering, Qce 2020, Oct. 2020, pp. 286–94. Scopus, doi:10.1109/QCE49297.2020.00043.Full Text
-
Wang, Ye, et al. “High-Fidelity Two-Qubit Gates Using a Microelectromechanical-System-Based Beam Steering System for Individual Qubit Addressing.” Physical Review Letters, vol. 125, no. 15, Oct. 2020, p. 150505. Epmc, doi:10.1103/physrevlett.125.150505.Full Text
-
Shi, Y., et al. “Resource-Efficient Quantum Computing by Breaking Abstractions.” Proceedings of the Ieee, vol. 108, no. 8, Aug. 2020, pp. 1353–70. Scopus, doi:10.1109/JPROC.2020.2994765.Full Text
-
Newman, M., et al. “Generating fault-tolerant cluster states from crystal structures.” Quantum, vol. 4, July 2020. Scopus, doi:10.22331/q-2020-07-13-295.Full Text
-
Debroy, D. M., et al. “Logical performance of 9 qubit compass codes in ion traps with crosstalk errors.” Quantum Science and Technology, vol. 5, no. 3, July 2020. Scopus, doi:10.1088/2058-9565/ab7e80.Full Text
-
Huang, S., et al. “Fault-tolerant weighted union-find decoding on the toric code.” Physical Review A, vol. 102, no. 1, July 2020. Scopus, doi:10.1103/PhysRevA.102.012419.Full Text
-
Huang, S., and K. R. Brown. “Fault-tolerant compass codes.” Physical Review A, vol. 101, no. 4, Apr. 2020. Scopus, doi:10.1103/PhysRevA.101.042312.Full Text
-
Jyothi, S., et al. “A hybrid ion-atom trap with integrated high resolution mass spectrometer.” Review of Scientific Instruments, vol. 90, no. 10, Oct. 2019. Scopus, doi:10.1063/1.5121431.Full Text Open Access Copy
-
Brown, N. C., and K. R. Brown. “Leakage mitigation for quantum error correction using a mixed qubit scheme.” Physical Review A, vol. 100, no. 3, Sept. 2019. Scopus, doi:10.1103/PhysRevA.100.032325.Full Text
-
Landsman, K. A., et al. “Two-qubit entangling gates within arbitrarily long chains of trapped ions.” Physical Review A, vol. 100, no. 2, Aug. 2019. Scopus, doi:10.1103/PhysRevA.100.022332.Full Text Open Access Copy
-
Brown, N. C., et al. “Handling leakage with subsystem codes.” New Journal of Physics, vol. 21, no. 7, July 2019. Scopus, doi:10.1088/1367-2630/ab3372.Full Text
-
Li, M., et al. “2D Compass Codes.” Physical Review X, vol. 9, no. 2, May 2019. Scopus, doi:10.1103/PhysRevX.9.021041.Full Text
-
Murphy, D. C., and K. R. Brown. “Controlling error orientation to improve quantum algorithm success rates.” Physical Review A, vol. 99, no. 3, Mar. 2019. Scopus, doi:10.1103/PhysRevA.99.032318.Full Text
-
Brown, Kenneth R. “Quantum technologies and the National Quantum Initiative.” Quantum Engineering, vol. 1, no. 1, Hindawi Limited, Mar. 2019, pp. e7–e7. Crossref, doi:10.1002/que2.7.Full Text
-
Debroy, Dripto M., et al. “Stabilizer Slicing: Coherent Error Cancellations in Low-Density Parity-Check Stabilizer Codes.” Physical Review Letters, vol. 121, no. 25, Dec. 2018, p. 250502. Epmc, doi:10.1103/physrevlett.121.250502.Full Text Open Access Copy
-
Beale, Stefanie J., et al. “Quantum Error Correction Decoheres Noise.” Physical Review Letters, vol. 121, no. 19, Nov. 2018, p. 190501. Epmc, doi:10.1103/physrevlett.121.190501.Full Text
-
Calvin, Aaron T., and Kenneth R. Brown. “Spectroscopy of Molecular Ions in Coulomb Crystals.” The Journal of Physical Chemistry Letters, vol. 9, no. 19, Oct. 2018, pp. 5797–804. Epmc, doi:10.1021/acs.jpclett.8b01387.Full Text
-
Leung, P. H., and K. R. Brown. “Entangling an arbitrary pair of qubits in a long ion crystal.” Physical Review A, vol. 98, no. 3, Sept. 2018. Scopus, doi:10.1103/PhysRevA.98.032318.Full Text
-
Brown, Natalie C., and Kenneth R. Brown. “Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 174Yb+ and 171Yb+.” Phys. Rev. A, vol. 97, May 2018, pp. 052301–052301. Manual, doi:10.1103/PhysRevA.97.052301.Full Text Link to Item
-
Li, Muyuan, et al. Direct measurement of Bacon-Shor code stabilizers. Apr. 2018.Link to Item
-
Trout, C. J., et al. “Simulating the performance of a distance-3 surface code in a linear ion trap.” New Journal of Physics, vol. 20, no. 4, Apr. 2018. Scopus, doi:10.1088/1367-2630/aab341.Full Text
-
Calvin, Aaron T., et al. “Rovibronic Spectroscopy of Sympathetically Cooled 40CaH+.” The Journal of Physical Chemistry A, vol. 122, no. 12, Mar. 2018, pp. 3177–81. Manual, doi:10.1021/acs.jpca.7b12823.Full Text
-
Leung, Pak Hong, et al. “Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force.” Physical Review Letters, vol. 120, no. 2, Jan. 2018, p. 020501. Epmc, doi:10.1103/physrevlett.120.020501.Full Text Open Access Copy
-
Condoluci, J., et al. “Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD.” The Journal of Chemical Physics, vol. 147, no. 21, Dec. 2017, p. 214309. Epmc, doi:10.1063/1.5016556.Full Text
-
Linke, Norbert M., et al. “Fault-tolerant quantum error detection.” Science Advances, vol. 3, no. 10, Oct. 2017, p. e1701074. Epmc, doi:10.1126/sciadv.1701074.Full Text
-
Li, M., et al. “Fault tolerance with bare ancillary qubits for a [[7,1,3]] code.” Physical Review A, vol. 96, no. 3, Sept. 2017. Scopus, doi:10.1103/PhysRevA.96.032341.Full Text
-
Rugango, René, et al. “Vibronic Spectroscopy of Sympathetically Cooled CaH.” Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, vol. 17, no. 22, Nov. 2016, pp. 3764–68. Epmc, doi:10.1002/cphc.201600645.Full Text
-
Gutiérrez, M., et al. “Errors and pseudothresholds for incoherent and coherent noise.” Physical Review A, vol. 94, no. 4, Oct. 2016. Scopus, doi:10.1103/PhysRevA.94.042338.Full Text
-
Fallek, S. D., et al. “Transport implementation of the Bernstein-Vazirani algorithm with ion qubits.” New Journal of Physics, vol. 18, no. 8, Aug. 2016. Scopus, doi:10.1088/1367-2630/18/8/083030.Full Text
-
Janardan, S., et al. “Analytical error analysis of Clifford gates by the fault-path tracer method.” Quantum Information Processing, vol. 15, no. 8, Aug. 2016, pp. 3065–79. Scopus, doi:10.1007/s11128-016-1330-z.Full Text
-
Brown, K. R., et al. “Co-designing a scalable quantum computer with trapped atomic ions.” Npj Quantum Information, vol. 2, no. 1, Jan. 2016. Scopus, doi:10.1038/npjqi.2016.34.Full Text
-
Rugango, Rene, et al. Trapping and Sympathetic Cooling of Boron Ions. 2016.Link to Item
-
Mount, E., et al. Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses. American Physical Society (APS), Dec. 2015. Dspace, doi:10.1103/PhysRevA.92.060301.Full Text Open Access Copy
-
Delaubenfels, T. E., et al. “Modulating carrier and sideband coupling strengths in a standing-wave gate beam.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 92, no. 6, Dec. 2015. Scopus, doi:10.1103/PhysRevA.92.061402.Full Text
-
Trout, C. J., and K. R. Brown. “Magic state distillation and gate compilation in quantum algorithms for quantum chemistry.” International Journal of Quantum Chemistry, vol. 115, no. 19, Oct. 2015, pp. 1296–304. Scopus, doi:10.1002/qua.24856.Full Text
-
Khanyile, Ncamiso B., et al. “Observation of vibrational overtones by single-molecule resonant photodissociation.” Nature Communications, vol. 6, July 2015, p. 7825. Epmc, doi:10.1038/ncomms8825.Full Text
-
Rugango, R., et al. “Sympathetic cooling of molecular ion motion to the ground state.” New Journal of Physics, vol. 17, Mar. 2015. Scopus, doi:10.1088/1367-2630/17/3/035009.Full Text
-
Gutiérrez, M., and K. R. Brown. “Comparison of a quantum error-correction threshold for exact and approximate errors.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 91, no. 2, Feb. 2015. Scopus, doi:10.1103/PhysRevA.91.022335.Full Text
-
Merrill, J. T., et al. “Transformed composite sequences for improved qubit addressing.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 90, no. 4, Oct. 2014. Scopus, doi:10.1103/PhysRevA.90.040301.Full Text
-
Kabytayev, C., et al. “Robustness of composite pulses to time-dependent control noise.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 90, no. 1, July 2014. Scopus, doi:10.1103/PhysRevA.90.012316.Full Text
-
Shu, G., et al. “Heating rates and ion-motion control in a y -junction surface-electrode trap.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 89, no. 6, June 2014. Scopus, doi:10.1103/PhysRevA.89.062308.Full Text
-
Monroe, C., et al. “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 89, no. 2, Feb. 2014. Scopus, doi:10.1103/PhysRevA.89.022317.Full Text
-
Brown, Kenneth R. “Physics Probing the electron.” Science (New York, N.Y.), vol. 343, no. 6168, Jan. 2014, pp. 255–56. Epmc, doi:10.1126/science.1246820.Full Text
-
Tomita, Y., et al. “Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 88, no. 4, Oct. 2013. Scopus, doi:10.1103/PhysRevA.88.042336.Full Text
-
Goeders, James E., et al. “Identifying single molecular ions by resolved sideband measurements.” The Journal of Physical Chemistry. A, vol. 117, no. 39, Oct. 2013, pp. 9725–31. Epmc, doi:10.1021/jp312368a.Full Text
-
Shappert, C. M., et al. “Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation.” New Journal of Physics, vol. 15, Aug. 2013. Scopus, doi:10.1088/1367-2630/15/8/083053.Full Text
-
Vittorini, Grahame, et al. “Modular cryostat for ion trapping with surface-electrode ion traps.” The Review of Scientific Instruments, vol. 84, no. 4, Apr. 2013, p. 043112. Epmc, doi:10.1063/1.4802948.Full Text
-
Gutiérrez, M., et al. “Approximation of realistic errors by Clifford channels and Pauli measurements.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 87, no. 3, Mar. 2013. Scopus, doi:10.1103/PhysRevA.87.030302.Full Text
-
Sarvepalli, P., and K. R. Brown. “Topological subsystem codes from graphs and hypergraphs.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 86, no. 4, Oct. 2012. Scopus, doi:10.1103/PhysRevA.86.042336.Full Text
-
Merrill, J. T., et al. “Demonstration of integrated microscale optics in surface-electrode ion traps.” New Journal of Physics, vol. 13, Oct. 2011. Scopus, doi:10.1088/1367-2630/13/10/103005.Full Text
-
Nguyen, J. H. V., et al. “Challenges of laser-cooling molecular ions.” New Journal of Physics, vol. 13, June 2011. Scopus, doi:10.1088/1367-2630/13/6/063023.Full Text
-
Tomita, Y., et al. “Analytical solution of thermal magnetization on memory stabilizer structures.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 82, no. 4, Oct. 2010. Scopus, doi:10.1103/PhysRevA.82.042303.Full Text
-
Crosson, I. J., et al. “Making classical ground-state spin computing fault-tolerant.” Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 82, no. 3 Pt 1, Sept. 2010, p. 031106. Epmc, doi:10.1103/physreve.82.031106.Full Text
-
Clark, C. R., et al. “Detection of single-ion spectra by Coulomb-crystal heating.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 81, no. 4, Apr. 2010. Scopus, doi:10.1103/PhysRevA.81.043428.Full Text
-
Brown, Kenneth R. “Quantum computing: chemistry from photons.” Nature Chemistry, vol. 2, no. 2, Feb. 2010, pp. 76–77. Epmc, doi:10.1038/nchem.527.Full Text
-
Tomita, Y., et al. “Multi-qubit compensation sequences.” New Journal of Physics, vol. 12, Jan. 2010. Scopus, doi:10.1088/1367-2630/12/1/015002.Full Text
-
Tanaka, U., et al. “Design and characterization of a planar trap.” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 42, no. 15, Nov. 2009. Scopus, doi:10.1088/0953-4075/42/15/154006.Full Text
-
Viteri, C. R., et al. “Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 80, no. 4, Oct. 2009. Scopus, doi:10.1103/PhysRevA.80.042313.Full Text
-
Clark, R. J., et al. “A two-dimensional lattice ion trap for quantum simulation.” Journal of Applied Physics, vol. 105, no. 1, July 2009. Scopus, doi:10.1063/1.3056227.Full Text
-
Clark, C. R., et al. “Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 79, no. 6, June 2009. Scopus, doi:10.1103/PhysRevA.79.062314.Full Text
-
Labaziewicz, Jaroslaw, et al. “Suppression of heating rates in cryogenic surface-electrode ion traps.” Physical Review Letters, vol. 100, no. 1, Jan. 2008, p. 013001. Epmc, doi:10.1103/physrevlett.100.013001.Full Text
-
Leibrandt, D. R., et al. “Laser ablation loading of a surface-electrode ion trap.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 76, no. 5, Nov. 2007. Scopus, doi:10.1103/PhysRevA.76.055403.Full Text
-
Brown, K. R., et al. “Passive cooling of a micromechanical oscillator with a resonant electric circuit.” Physical Review Letters, vol. 99, no. 13, Sept. 2007. Scopus, doi:10.1103/PhysRevLett.99.137205.Full Text
-
Brown, K. R. “Energy protection arguments fail in the interaction picture.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 76, no. 2, Aug. 2007. Scopus, doi:10.1103/PhysRevA.76.022327.Full Text
-
Labaziewicz, Jaroslaw, et al. “Compact, filtered diode laser system for precision spectroscopy.” Optics Letters, vol. 32, no. 5, Mar. 2007, pp. 572–74. Epmc, doi:10.1364/ol.32.000572.Full Text
-
Brown, K. R., et al. “Loading and characterization of a printed-circuit-board atomic ion trap.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 75, no. 1, Jan. 2007. Scopus, doi:10.1103/PhysRevA.75.015401.Full Text
-
Brown, Kenneth R., et al. “Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance.” Physical Review Letters, vol. 97, no. 5, Aug. 2006, p. 050504. Epmc, doi:10.1103/physrevlett.97.050504.Full Text
-
Pearson, C. E., et al. “Experimental investigation of planar ion traps.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 73, no. 3, Mar. 2006. Scopus, doi:10.1103/PhysRevA.73.032307.Full Text
-
Moore, K. L., et al. “Bose-Einstein condensation in a mm-scale Ioffe-Pritchard trap.” Applied Physics B: Lasers and Optics, vol. 82, no. 4, Mar. 2006, pp. 533–38. Scopus, doi:10.1007/s00340-005-2101-1.Full Text
-
Brown, K. R., et al. “Erratum: Arbitrarily accurate composite pulse sequences (Physics Review A (2004) 70 (052318)).” Physical Review a Atomic, Molecular, and Optical Physics, vol. 72, no. 3, Sept. 2005. Scopus, doi:10.1103/PhysRevA.72.039905.Full Text
-
Storcz, M. J., et al. “Full protection of superconducting qubit systems from coupling errors.” Physical Review B Condensed Matter and Materials Physics, vol. 72, no. 6, Aug. 2005. Scopus, doi:10.1103/PhysRevB.72.064511.Full Text
-
Yu, T. M., et al. “Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 71, no. 3, Mar. 2005. Scopus, doi:10.1103/PhysRevA.71.032341.Full Text
-
Brown, K. R., et al. “Arbitrarily accurate composite pulse sequences.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 70, no. 5 A, Nov. 2004. Scopus, doi:10.1103/PhysRevA.70.052318.Full Text
-
Leslie, S., et al. “Transmission spectrum of an optical cavity containing N atoms.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 69, no. 4, Jan. 2004. Scopus, doi:10.1103/PhysRevA.69.043805.Full Text
-
Brown, K. R., et al. “Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 67, no. 1, Jan. 2003, p. 5. Scopus, doi:10.1103/PhysRevA.67.012309.Full Text
-
Brown, K. R., et al. “Deterministic optical Fock-state generation.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 67, no. 4, Jan. 2003, p. 16. Scopus, doi:10.1103/PhysRevA.67.043818.Full Text
-
Shenvi, N., et al. “Effects of a random noisy oracle on search algorithm complexity.” Physical Review a Atomic, Molecular, and Optical Physics, vol. 68, no. 5, Jan. 2003, p. 11. Scopus, doi:10.1103/PhysRevA.68.052313.Full Text
-
Brown, K. R., et al. “Quantum computing with quantum dots on quantum linear supports.” Physical Review A. Atomic, Molecular, and Optical Physics, vol. 65, no. 1, Jan. 2002, pp. 123071–1230719.
-
Bacon, D., et al. “Coherence-preserving quantum bits.” Physical Review Letters, vol. 87, no. 24, Dec. 2001, p. 247902. Epmc, doi:10.1103/physrevlett.87.247902.Full Text
-
Sullivan, Michael B., et al. “Quantum Chemical Analysis of para-Substitution Effects on the Electronic Structure of Phenylnitrenium Ions in the Gas Phase and Aqueous Solution [J. Am. Chem. Soc. 1998, 120, 11778−11783].” Journal of the American Chemical Society, vol. 121, no. 47, American Chemical Society (ACS), Dec. 1999, pp. 11026–11026. Crossref, doi:10.1021/ja9955363.Full Text
-
Sullivan, Michael B., et al. “Quantum Chemical Analysis of para-Substitution Effects on the Electronic Structure of Phenylnitrenium Ions in the Gas Phase and Aqueous Solution.” Journal of the American Chemical Society, vol. 120, no. 45, American Chemical Society (ACS), Nov. 1998, pp. 11778–83. Crossref, doi:10.1021/ja982542a.Full Text
-
-
Book Sections
-
Merrill, J. T., and K. R. Brown. Progress in compensating pulse sequences for quantum computation. Vol. 154, 2014, pp. 241–94. Scopus, doi:10.1002/9781118742631.ch10.Full Text
-
-
Conference Papers
-
Gokhale, P., et al. “Asymptotic improvements to quantum circuits via qutrits.” Proceedings International Symposium on Computer Architecture, 2019, pp. 554–66. Scopus, doi:10.1145/3307650.3322253.Full Text
-
Javadi-Abhari, A., et al. “Optimized surface code communication in superconducting quantum computers.” Proceedings of the Annual International Symposium on Microarchitecture, Micro, vol. Part F131207, 2017, pp. 692–705. Scopus, doi:10.1145/3123939.3123949.Full Text
-
Heckey, J., et al. “Compiler management of communication and parallelism for quantum computation.” International Conference on Architectural Support for Programming Languages and Operating Systems Asplos, vol. 2015-January, 2015, pp. 445–56. Scopus, doi:10.1145/2694344.2694357.Full Text
-
Brown, K. R., et al. “Laser-cooled atomic ions as probes of molecular ions.” Aip Conference Proceedings, vol. 1642, 2015, pp. 392–95. Scopus, doi:10.1063/1.4906702.Full Text
-
Kudrow, D., et al. “Quantum rotations: A case study in static and dynamic machine-code generation for quantum computers.” Proceedings International Symposium on Computer Architecture, 2013, pp. 166–76. Scopus, doi:10.1145/2485922.2485937.Full Text
-
Brown, K. R. “Sympathetic heating spectroscopy: Probing molecular ions with laser-cooled atomic ions.” Optics Infobase Conference Papers, 2010.
-
-
Preprints
-
Jia, Zhubing, et al. Angle-robust Two-Qubit Gates in a Linear Ion Crystal. 10 Oct. 2022.Link to Item
-
Jia, Zhubing, et al. Determination of Multi-mode Motional Quantum States in a Trapped Ion System. 23 May 2022.Link to Item
-
-
- Teaching & Mentoring
-
Recent Courses
- ECE 420: Introduction to Quantum Engineering 2023
- ECE 494: Projects in Electrical and Computer Engineering 2023
- ECE 520: Graduate Introduction to Quantum Engineering 2023
- ECE 621: Quantum Error Correction 2023
- ECE 891: Internship 2023
- ECE 899: Special Readings in Electrical Engineering 2023
- HOUSECS 59: House Course 2023
- PHYSICS 493: Research Independent Study 2023
- PHYSICS 628: Quantum Error Correction 2023
- PHYSICS 995: Graduate Training Internship 2023
- ECE 391: Projects in Electrical and Computer Engineering 2022
- ECE 420: Introduction to Quantum Engineering 2022
- ECE 493: Projects in Electrical and Computer Engineering 2022
- ECE 520: Graduate Introduction to Quantum Engineering 2022
- ECE 621: Quantum Error Correction 2022
- ECE 891: Internship 2022
- ECE 899: Special Readings in Electrical Engineering 2022
- EGR 393: Research Projects in Engineering 2022
- HOUSECS 59: House Course 2022
- PHYSICS 493: Research Independent Study 2022
- PHYSICS 495: Thesis Independent Study 2022
- PHYSICS 628: Quantum Error Correction 2022
- ECE 270DL: Fields and Waves: Fundamentals of Information Propagation 2021
- ECE 270L9: Fields and Waves: Fundamentals of Information Propagation (Lab) 2021
- ECE 420: Introduction to Quantum Engineering 2021
- ECE 520: Graduate Introduction to Quantum Engineering 2021
- ECE 891: Internship 2021
- HOUSECS 59: House Course 2021
- PHYSICS 493: Research Independent Study 2021
- PHYSICS 495: Thesis Independent Study 2021
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.