Probabilistic conformance for cyber-physical systems
In system analysis, conformance indicates that two systems simultaneously satisfy the same set of specifications of interest; thus, the results from analyzing one system automatically transfer to the other, or one system can safely replace the other in practice. In this work, we study the probabilistic conformance of cyber-physical systems (CPS). We propose a notion of (approximate) probabilistic conformance for sets of complex specifications expressed by the Signal Temporal Logic (STL). Based on a novel statistical test, we develop the first statistical verification methods for the probabilistic conformance of a wide class of CPS. Using this method, we verify the conformance of the startup time of the widely-used full and simplified model of Toyota powertrain systems, the settling time of model-predictive-control-based and neural-network-based automotive lane-keeping controllers, as well as the maximal voltage deviation of full and simplified power grid systems.