Skip to main content
Journal cover image

Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering.

Publication ,  Journal Article
Wang, L; Lee, DJ; Han, H; Zhao, L; Tsukamoto, H; Kim, Y-I; Musicant, AM; Parag-Sharma, K; Hu, X; Tseng, HC; Chi, J-T; Wang, Z; Amelio, AL; Ko, C-C
Published in: J Tissue Eng
2021

Bioluminescent imaging (BLI) has emerged as a popular in vivo tracking modality in bone regeneration studies stemming from its clear advantages: non-invasive, real-time, and inexpensive. We recently adopted bioluminescence resonance energy transfer (BRET) principle to improve BLI cell tracking and generated the brightest bioluminescent signal known to date, which thus enables more sensitive real-time cell tracking at deep tissue level. In the present study, we brought BRET-based cell tracking strategy into the field of bone tissue engineering for the first time. We labeled rat mesenchymal stem cells (rMSCs) with our in-house BRET-based GpNLuc reporter and evaluated the cell tracking efficacy both in vitro and in vivo. In scaffold-free spheroid 3D culture system, using BRET-based GpNLuc labeling resulted in significantly better correlation to cell numbers than a fluorescence based approach. In scaffold-based 3D culture system, GpNLuc-rMSCs displayed robust bioluminescence signals with minimal background noise. Furthermore, a tight correlation between BLI signal and cell number highlighted the robust reliability of using BRET-based BLI. In calvarial critical sized defect model, robust signal and the consistency in cell survival evaluation collectively supported BRET-based GpNLuc labeling as a reliable approach for non-invasively tracking MSC. In summary, BRET-based GpNLuc labeling is a robust, reliable, and inexpensive real-time cell tracking method, which offers a promising direction for the technological innovation of BLI and even non-invasive tracking systems, in the field of bone tissue engineering.

Duke Scholars

Published In

J Tissue Eng

DOI

ISSN

2041-7314

Publication Date

2021

Volume

12

Start / End Page

2041731421995465

Location

England

Related Subject Headings

  • 4003 Biomedical engineering
  • 3206 Medical biotechnology
  • 1004 Medical Biotechnology
  • 0601 Biochemistry and Cell Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, L., Lee, D. J., Han, H., Zhao, L., Tsukamoto, H., Kim, Y.-I., … Ko, C.-C. (2021). Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng, 12, 2041731421995465. https://doi.org/10.1177/2041731421995465
Wang, Lufei, Dong Joon Lee, Han Han, Lixing Zhao, Hiroshi Tsukamoto, Yong-Il Kim, Adele M. Musicant, et al. “Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering.J Tissue Eng 12 (2021): 2041731421995465. https://doi.org/10.1177/2041731421995465.
Wang L, Lee DJ, Han H, Zhao L, Tsukamoto H, Kim Y-I, et al. Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng. 2021;12:2041731421995465.
Wang, Lufei, et al. “Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering.J Tissue Eng, vol. 12, 2021, p. 2041731421995465. Pubmed, doi:10.1177/2041731421995465.
Wang L, Lee DJ, Han H, Zhao L, Tsukamoto H, Kim Y-I, Musicant AM, Parag-Sharma K, Hu X, Tseng HC, Chi J-T, Wang Z, Amelio AL, Ko C-C. Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng. 2021;12:2041731421995465.
Journal cover image

Published In

J Tissue Eng

DOI

ISSN

2041-7314

Publication Date

2021

Volume

12

Start / End Page

2041731421995465

Location

England

Related Subject Headings

  • 4003 Biomedical engineering
  • 3206 Medical biotechnology
  • 1004 Medical Biotechnology
  • 0601 Biochemistry and Cell Biology