Skip to main content
Journal cover image

Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride

Publication ,  Journal Article
Guzelturk, B; Trigo, M; Delaire, O; Reis, DA; Lindenberg, AM
Published in: ACS Photonics
December 15, 2021

Lead telluride (PbTe), a narrow bandgap semiconductor commonly used in infrared detectors, exhibits anomalous vibrational and structural properties, making it appealing for thermoelectrics. Despite significant fundamental interest in the microscopic origins of its unusual vibrational properties, the optical functionalities stemming from phonons and electron-phonon coupling in PbTe have not been closely investigated. This paper reports measurements of terahertz (THz) radiation from a PbTe single crystal following ultrafast optical excitation and investigates IR-active phonon responses as a function of excitation fluence and temperature. We uncover a spectrally tunable THz emission peak enabled by an epsilon-near-zero response of the coupled plasmon-longitudinal optical phonon mode that can be dynamically shifted via tuning photocarrier density. Spectral tunability (Δω/ω = 25%) is significant and beyond what has been achieved by any other THz emitter. In addition, the emitted THz fields reveal signatures of a zone center transverse optical phonon anomaly and unveil a new mode at 0.3 THz that diminishes in amplitude under increasing photocarrier density. Temperature-dependent measurements suggest that the transverse-like modes at 1 and 1.5 THz are possibly of different origins. These results indicate that the unusual phononic properties in PbTe are tunable via photoexcitation and enable new optical functionalities in THz applications, such as spectrally tunable emitters and all-optical modulators.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS Photonics

DOI

EISSN

2330-4022

Publication Date

December 15, 2021

Volume

8

Issue

12

Start / End Page

3633 / 3640

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 0906 Electrical and Electronic Engineering
  • 0206 Quantum Physics
  • 0205 Optical Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Guzelturk, B., Trigo, M., Delaire, O., Reis, D. A., & Lindenberg, A. M. (2021). Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride. ACS Photonics, 8(12), 3633–3640. https://doi.org/10.1021/acsphotonics.1c01291
Guzelturk, B., M. Trigo, O. Delaire, D. A. Reis, and A. M. Lindenberg. “Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride.” ACS Photonics 8, no. 12 (December 15, 2021): 3633–40. https://doi.org/10.1021/acsphotonics.1c01291.
Guzelturk B, Trigo M, Delaire O, Reis DA, Lindenberg AM. Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride. ACS Photonics. 2021 Dec 15;8(12):3633–40.
Guzelturk, B., et al. “Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride.” ACS Photonics, vol. 8, no. 12, Dec. 2021, pp. 3633–40. Scopus, doi:10.1021/acsphotonics.1c01291.
Guzelturk B, Trigo M, Delaire O, Reis DA, Lindenberg AM. Dynamically Tunable Terahertz Emission Enabled by Anomalous Optical Phonon Responses in Lead Telluride. ACS Photonics. 2021 Dec 15;8(12):3633–3640.
Journal cover image

Published In

ACS Photonics

DOI

EISSN

2330-4022

Publication Date

December 15, 2021

Volume

8

Issue

12

Start / End Page

3633 / 3640

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 0906 Electrical and Electronic Engineering
  • 0206 Quantum Physics
  • 0205 Optical Physics