Binding kinetics of harmonically confined random walkers.
Diffusion-mediated binding of molecules under the influence of discrete spatially confining potentials is a commonly encountered scenario in systems subjected to explicit fields or implicit fields arising from tethering restraints. Here, we derive analytical expressions for the mean binding time of two random walkers geometrically confined by means of two harmonic potentials in one- and two-dimensional systems, which show excellent agreement with Brownian dynamics simulations. As a demonstration of its utility, we use this theory to maximize the communication speed in existing DNA walkers, obtaining quantitative agreement with previously reported experimental findings. The analytical expressions derived in this paper are broadly applicable to diverse systems, providing ways to characterize communication processes and optimize the rate of signal propagation for sensing and computing applications at the nanoscale.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering