Boron nitride on SiC(0001)
In the field of van der Waals heterostructures, the twist angle between stacked two-dimensional layers has been identified to be of utmost importance for the properties of the heterostructures. In this context, we previously reported the growth of a single layer of unconventionally oriented epitaxial graphene that forms in a surfactant atmosphere [F. C. Bocquet, Phys. Rev. Lett. 125, 106102 (2020)0031-900710.1103/PhysRevLett.125.106102]. The resulting G-R0° layer is aligned with the SiC lattice, and hence represents an important milestone towards high-quality twisted bilayer graphene, a frequently investigated model system in this field. Here, we focus on the surface structures obtained in the same surfactant atmosphere, but at lower preparation temperatures at which a boron nitride template layer forms on SiC(0001). In a comprehensive study based on complementary experimental and theoretical techniques, we find - in contrast to the literature - that this template layer is a hexagonal BxNy layer, but not high-quality hBN. It is aligned with the SiC lattice and gradually replaced by low-quality graphene in the 0° orientation of the BxNy template layer upon annealing.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry