Skip to main content

HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance

Publication ,  Conference
Yang, H; Yang, X; Gong, NZ; Chen, Y
Published in: Proceedings - Design Automation Conference
July 10, 2022

With the recent demand of deploying neural network models on mobile and edge devices, it is desired to improve the model's generalizability on unseen testing data, as well as enhance the model's robustness under fixed-point quantization for efficient deployment. Minimizing the training loss, however, provides few guarantees on the generalization and quantization performance. In this work, we fulfill the need of improving generalization and quantization performance simultaneously by theoretically unifying them under the framework of improving the model's robustness against bounded weight perturbation and minimizing the eigenvalues of the Hessian matrix with respect to model weights. We therefore propose HERO, a Hessian-enhanced robust optimization method, to minimize the Hessian eigenvalues through a gradient-based training process, simultaneously improving the generalization and quantization performance. HERO enables up to a 3.8% gain on test accuracy, up to 30% higher accuracy under 80% training label perturbation, and the best post-training quantization accuracy across a wide range of precision, including a > 10% accuracy improvement over SGD-trained models for common model architectures on various datasets.

Duke Scholars

Published In

Proceedings - Design Automation Conference

DOI

ISSN

0738-100X

Publication Date

July 10, 2022

Start / End Page

25 / 30
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yang, H., Yang, X., Gong, N. Z., & Chen, Y. (2022). HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance. In Proceedings - Design Automation Conference (pp. 25–30). https://doi.org/10.1145/3489517.3530678
Yang, H., X. Yang, N. Z. Gong, and Y. Chen. “HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance.” In Proceedings - Design Automation Conference, 25–30, 2022. https://doi.org/10.1145/3489517.3530678.
Yang H, Yang X, Gong NZ, Chen Y. HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance. In: Proceedings - Design Automation Conference. 2022. p. 25–30.
Yang, H., et al. “HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance.” Proceedings - Design Automation Conference, 2022, pp. 25–30. Scopus, doi:10.1145/3489517.3530678.
Yang H, Yang X, Gong NZ, Chen Y. HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance. Proceedings - Design Automation Conference. 2022. p. 25–30.

Published In

Proceedings - Design Automation Conference

DOI

ISSN

0738-100X

Publication Date

July 10, 2022

Start / End Page

25 / 30