Skip to main content
Journal cover image

Model-based simulations of pulsed laser ablation using an embedded finite element method.

Publication ,  Journal Article
Liu, Y; Claus, S; Kerfriden, P; Chen, J; Zhong, P; Dolbow, JE
Published in: International journal of heat and mass transfer
May 2023

A model of thermal ablation with application to multi-pulsed laser lithotripsy is presented. The approach is based on a one-sided Stefan-Signorini model for thermal ablation, and relies on a level-set function to represent the moving interface between the solid phase and a fictitious gas phase (representing the ablated material). The model is discretized with an embedded finite element method, wherein the interface geometry can be arbitrarily located relative to the background mesh. Nitsche's method is adopted to impose the Signorini condition on the moving interface. A bound constraint is also imposed to deal with thermal shocks that can arise during representative simulations of pulsed ablation with high-power lasers. We report simulation results based on experiments for pulsed laser ablation of wet BegoStone samples treated in air, where Begostone has been used as a phantom material for kidney stone. The model is calibrated against experimental measurements by adjusting the percentage of incoming laser energy absorbed at the surface of the stone sample. Simulation results are then validated against experimental observations for the crater area, volume, and geometry as a function of laser pulse energy and duration. Our studies illustrate how the spreading of the laser beam from the laser fiber tip with concomitantly reduced incident laser irradiance on the damaged crater surface explains trends in both the experimental observations and the model-based simulation results.

Duke Scholars

Published In

International journal of heat and mass transfer

DOI

ISSN

0017-9310

Publication Date

May 2023

Volume

204

Start / End Page

123843

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Liu, Y., Claus, S., Kerfriden, P., Chen, J., Zhong, P., & Dolbow, J. E. (2023). Model-based simulations of pulsed laser ablation using an embedded finite element method. International Journal of Heat and Mass Transfer, 204, 123843. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123843
Liu, Yangyuanchen, Susanne Claus, Pierre Kerfriden, Junqin Chen, Pei Zhong, and John E. Dolbow. “Model-based simulations of pulsed laser ablation using an embedded finite element method.International Journal of Heat and Mass Transfer 204 (May 2023): 123843. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123843.
Liu Y, Claus S, Kerfriden P, Chen J, Zhong P, Dolbow JE. Model-based simulations of pulsed laser ablation using an embedded finite element method. International journal of heat and mass transfer. 2023 May;204:123843.
Liu, Yangyuanchen, et al. “Model-based simulations of pulsed laser ablation using an embedded finite element method.International Journal of Heat and Mass Transfer, vol. 204, May 2023, p. 123843. Epmc, doi:10.1016/j.ijheatmasstransfer.2022.123843.
Liu Y, Claus S, Kerfriden P, Chen J, Zhong P, Dolbow JE. Model-based simulations of pulsed laser ablation using an embedded finite element method. International journal of heat and mass transfer. 2023 May;204:123843.
Journal cover image

Published In

International journal of heat and mass transfer

DOI

ISSN

0017-9310

Publication Date

May 2023

Volume

204

Start / End Page

123843

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences