Skip to main content
Journal cover image

Evolving characterization of the human hyperdirect pathway.

Publication ,  Journal Article
Bingham, CS; Petersen, MV; Parent, M; McIntyre, CC
Published in: Brain structure & function
March 2023

The hyperdirect pathway (HDP) represents the main glutamatergic input to the subthalamic nucleus (STN), through which the motor and prefrontal cerebral cortex can modulate basal ganglia activity. Further, direct activation of the motor HDP is thought to be an important component of therapeutic deep brain stimulation (DBS), mediating the disruption of pathological oscillations. Alternatively, unintended recruitment of the prefrontal HDP may partly explain some cognitive side effects of DBS therapy. Previous work describing the HDP has focused on non-human primate (NHP) histological pathway tracings, diffusion-weighted MRI analysis of human white matter, and electrophysiology studies involving paired cortical recordings with DBS. However, none of these approaches alone yields a complete understanding of the complexities of the HDP. As such, we propose that generative modeling methods hold promise to bridge anatomy and physiology results, from both NHPs and humans, into a more detailed representation of the human HDP. Nonetheless, numerous features of the HDP remain to be experimentally described before model-based methods can simulate corticosubthalamic activity with a high degree of scientific detail. Therefore, the goals of this review are to examine the experimental evidence for HDP projections from across the primate neocortex and discuss new data which are required to improve the utility of anatomical and biophysical models of the human corticosubthalamic system.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Brain structure & function

DOI

EISSN

1863-2661

ISSN

1863-2653

Publication Date

March 2023

Volume

228

Issue

2

Start / End Page

353 / 365

Related Subject Headings

  • Subthalamic Nucleus
  • Primates
  • Neurology & Neurosurgery
  • Neocortex
  • Humans
  • Developmental Biology
  • Deep Brain Stimulation
  • Basal Ganglia
  • Animals
  • 3209 Neurosciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bingham, C. S., Petersen, M. V., Parent, M., & McIntyre, C. C. (2023). Evolving characterization of the human hyperdirect pathway. Brain Structure & Function, 228(2), 353–365. https://doi.org/10.1007/s00429-023-02610-5
Bingham, Clayton S., Mikkel V. Petersen, Martin Parent, and Cameron C. McIntyre. “Evolving characterization of the human hyperdirect pathway.Brain Structure & Function 228, no. 2 (March 2023): 353–65. https://doi.org/10.1007/s00429-023-02610-5.
Bingham CS, Petersen MV, Parent M, McIntyre CC. Evolving characterization of the human hyperdirect pathway. Brain structure & function. 2023 Mar;228(2):353–65.
Bingham, Clayton S., et al. “Evolving characterization of the human hyperdirect pathway.Brain Structure & Function, vol. 228, no. 2, Mar. 2023, pp. 353–65. Epmc, doi:10.1007/s00429-023-02610-5.
Bingham CS, Petersen MV, Parent M, McIntyre CC. Evolving characterization of the human hyperdirect pathway. Brain structure & function. 2023 Mar;228(2):353–365.
Journal cover image

Published In

Brain structure & function

DOI

EISSN

1863-2661

ISSN

1863-2653

Publication Date

March 2023

Volume

228

Issue

2

Start / End Page

353 / 365

Related Subject Headings

  • Subthalamic Nucleus
  • Primates
  • Neurology & Neurosurgery
  • Neocortex
  • Humans
  • Developmental Biology
  • Deep Brain Stimulation
  • Basal Ganglia
  • Animals
  • 3209 Neurosciences