Skip to main content

Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway.

Publication ,  Journal Article
McCann, JJ; Fleenor, DE; Chen, J; Lai, C-H; Bass, TE; Kastan, MB
Published in: Radiat Res
April 1, 2023

Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Radiat Res

DOI

EISSN

1938-5404

Publication Date

April 1, 2023

Volume

199

Issue

4

Start / End Page

406 / 421

Location

United States

Related Subject Headings

  • RNA Precursors
  • Protein Serine-Threonine Kinases
  • Oncology & Carcinogenesis
  • Neoplasms
  • Humans
  • DNA Damage
  • DEAD-box RNA Helicases
  • Ataxia Telangiectasia Mutated Proteins
  • Alternative Splicing
  • 4202 Epidemiology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McCann, J. J., Fleenor, D. E., Chen, J., Lai, C.-H., Bass, T. E., & Kastan, M. B. (2023). Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res, 199(4), 406–421. https://doi.org/10.1667/RADE-22-00219.1
McCann, Jennifer J., Donald E. Fleenor, Jing Chen, Chun-Hsiang Lai, Thomas E. Bass, and Michael B. Kastan. “Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway.Radiat Res 199, no. 4 (April 1, 2023): 406–21. https://doi.org/10.1667/RADE-22-00219.1.
McCann JJ, Fleenor DE, Chen J, Lai C-H, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res. 2023 Apr 1;199(4):406–21.
McCann, Jennifer J., et al. “Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway.Radiat Res, vol. 199, no. 4, Apr. 2023, pp. 406–21. Pubmed, doi:10.1667/RADE-22-00219.1.
McCann JJ, Fleenor DE, Chen J, Lai C-H, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res. 2023 Apr 1;199(4):406–421.

Published In

Radiat Res

DOI

EISSN

1938-5404

Publication Date

April 1, 2023

Volume

199

Issue

4

Start / End Page

406 / 421

Location

United States

Related Subject Headings

  • RNA Precursors
  • Protein Serine-Threonine Kinases
  • Oncology & Carcinogenesis
  • Neoplasms
  • Humans
  • DNA Damage
  • DEAD-box RNA Helicases
  • Ataxia Telangiectasia Mutated Proteins
  • Alternative Splicing
  • 4202 Epidemiology