Time-resolved passive cavitation mapping using the transient angular spectrum approach
Jing, Y; Li, M; Gu, J; Zhong, P; Yao, J
Published in: The Journal of the Acoustical Society of America
Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery. This study investigates a transient angular spectrum (AS) approach for PCM. The working principle of this approach is to backpropagate the received signal to the domain of interest and reconstruct the spatial–temporal wavefield encoded with the bubble location and collapse time. The transient AS approach is validated using an in silico model, water bath, and in vivo experiments. It is found that the transient AS approach yields similar results to delay and sum, but is considerably faster. The results obtained by this study suggest that the transient AS approach is promising for fast and accurate PCM.