Skip to main content
Journal cover image

Melatonin inhibits hippocampal long-term potentiation.

Publication ,  Journal Article
Wang, LM; Suthana, NA; Chaudhury, D; Weaver, DR; Colwell, CS
Published in: The European journal of neuroscience
November 2005

The goal of this study is to investigate the effect of the hormone melatonin on long-term potentiation and excitability measured by stimulating the Schaffer collaterals and recording the field excitatory postsynaptic potential from the CA1 dendritic layer in hippocampal brain slices from mice. Application of melatonin produced a concentration-dependent inhibition of the induction of long-term potentiation, with a concentration of 100 nm producing an approximately 50% inhibition of long-term potentiation magnitude. Long-duration melatonin treatments of 6 h were also effective at reducing the magnitude of long-term potentiation. Melatonin (100 nm) did not alter baseline evoked responses or paired-pulse facilitation recorded at this synapse. The inhibitory actions of melatonin were prevented by application of the melatonin (MT) receptor antagonist luzindole as well as the MT2 receptor subtype antagonist 4-phenyl-2-propionamidotetraline. These inhibitory actions of melatonin were lost in mice deficient in MT2 receptors but not those deficient in MT1 receptors. In addition, application of the protein kinase A inhibitor H-89 both mimicked the effects of melatonin and precluded further inhibition by melatonin. Finally, the application an activator of adenylyl cyclase, forskolin, overcame the inhibitory effects of melatonin on LTP without affecting the induction of long-term potentiation on its own. These results suggest that hippocampal synaptic plasticity may be constrained by melatonin through a mechanism involving MT2-receptor-mediated regulation of the adenylyl cyclase-protein kinase A pathway.

Duke Scholars

Published In

The European journal of neuroscience

DOI

EISSN

1460-9568

ISSN

0953-816X

Publication Date

November 2005

Volume

22

Issue

9

Start / End Page

2231 / 2237

Related Subject Headings

  • Tryptamines
  • Synaptic Transmission
  • Sulfonamides
  • Receptor, Melatonin, MT2
  • Receptor, Melatonin, MT1
  • Protein Kinase Inhibitors
  • Neurology & Neurosurgery
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, L. M., Suthana, N. A., Chaudhury, D., Weaver, D. R., & Colwell, C. S. (2005). Melatonin inhibits hippocampal long-term potentiation. The European Journal of Neuroscience, 22(9), 2231–2237. https://doi.org/10.1111/j.1460-9568.2005.04408.x
Wang, Louisa M., Nanthia A. Suthana, Dipesh Chaudhury, David R. Weaver, and Christopher S. Colwell. “Melatonin inhibits hippocampal long-term potentiation.The European Journal of Neuroscience 22, no. 9 (November 2005): 2231–37. https://doi.org/10.1111/j.1460-9568.2005.04408.x.
Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. The European journal of neuroscience. 2005 Nov;22(9):2231–7.
Wang, Louisa M., et al. “Melatonin inhibits hippocampal long-term potentiation.The European Journal of Neuroscience, vol. 22, no. 9, Nov. 2005, pp. 2231–37. Epmc, doi:10.1111/j.1460-9568.2005.04408.x.
Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. The European journal of neuroscience. 2005 Nov;22(9):2231–2237.
Journal cover image

Published In

The European journal of neuroscience

DOI

EISSN

1460-9568

ISSN

0953-816X

Publication Date

November 2005

Volume

22

Issue

9

Start / End Page

2231 / 2237

Related Subject Headings

  • Tryptamines
  • Synaptic Transmission
  • Sulfonamides
  • Receptor, Melatonin, MT2
  • Receptor, Melatonin, MT1
  • Protein Kinase Inhibitors
  • Neurology & Neurosurgery
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice