Vapour bubbles produced by long-pulsed laser: a race between advection and phase transition.
Vapor bubbles produced by long-pulsed laser often have complex non-spherical shapes that reflect some characteristics of the laser beam. The transition between two commonly observed shapes - namely, a rounded pear-like shape and an elongated conical shape - is studied using a new computational model that combines compressible multiphase fluid dynamics with laser radiation and phase transition. Two laboratory experiments are simulated, in which Holmium:YAG and Thulium fiber lasers are used respectively to generate bubbles of different shapes. In both cases, the predicted bubble nucleation and morphology agree reasonably well with the experimental observation. The full-field results of laser irradiance, temperature, velocity, and pressure are analyzed to explain bubble dynamics and energy transmission. It is found that due to the lasting energy input, the vapor bubble's dynamics is driven not only by advection, but also by the continued vaporization at its surface. Vaporization lasts less than 1 microsecond in the case of the pear-shaped bubble, compared to over 50 microseconds for the elongated bubble. It is thus hypothesized that the bubble's morphology is determined by a competition. When the speed of advection is higher than that of vaporization, the bubble tends to grow spherically. Otherwise, it elongates along the laser beam direction. To test this hypothesis, the two speeds are defined analytically using a model problem, then estimated for the experiments using simulation results. The results support the hypothesis. They also suggest that when the laser's power is fixed, a higher laser absorption coefficient and a narrower beam facilitate bubble elongation.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences