Hydrogel formulations for sustained-release of broadly neutralizing antibodies.
Sustained serum levels of broadly neutralizing antibodies (bnAbs) are crucial for effective passive immunization against infectious diseases as protection persists only while these bnAbs remain at adequate concentrations within the body. Current obstacles, such as poor pharmacokinetics (PK) and burdensome administration, must be overcome to make bnAbs a viable option for pre- and post-exposure prophylaxis. In this work, we explore how a polymer-nanoparticle (PNP) hydrogel depot technology can be engineered to prolong protein delivery and enable drug exposure on the order of weeks to months. In-vivo studies in mice and rats demonstrate extended protein release compared to bolus administration, and modeling efforts predict the impact of both the elimination half-life of the active pharmaceutical ingredient and hydrogel depot volume on overall pharmacokinetics. Moreover, flow cytometry characterization reveals that immune cell infiltration into the hydrogel depot can result in faster-than-expected release of antibody cargo on account of active transport via cellular uptake. We then demonstrate that co-formulation of antibodies with an anti-inflammatory agent reduces cellular infiltration and resulting active transport, further extending delivery and pharmacokinetics. Finally, multicompartmental modeling predicts the human PK profiles of clinically relevant HIV bnAbs delivered via subcutaneous hydrogel injection. These findings aid in the development of next generation hydrogel materials that stabilize and slowly release bnAbs for long-term pre-exposure immunoprophylaxis.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Rats, Sprague-Dawley
- Rats
- Pharmacology & Pharmacy
- Nanoparticles
- Mice
- Male
- Hydrogels
- Humans
- Female
- Drug Liberation
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Rats, Sprague-Dawley
- Rats
- Pharmacology & Pharmacy
- Nanoparticles
- Mice
- Male
- Hydrogels
- Humans
- Female
- Drug Liberation