P-Type Doping of Mixed Tin-Lead Halide Perovskites Using Electron Transfer to Mo(tfd-COCF3)<sub>3</sub> and F<sub>4</sub>TCNQ.
Mixed tin-lead halide perovskites are emerging as promising candidates to address the toxicity issues of lead-based perovskites and to provide additional bandgap tunability for optoelectronic applications. Electron-transfer doping offers a prospective pathway to modulate electronic properties of metal-halide perovskites, while not disturbing the underlying crystal structure. However, limited research exists comparing molecular dopants for these systems. Our study investigates the p-type electron-transfer doping of the mixed tin-lead halide perovskite MAPb0.5Sn0.5I3 (MA = methylammonium) using a sequential deposition approach (perovskite film followed by dopant incorporation) and the molecular dopants F4TCNQ and Mo(tfd-COCF3)3. Up to 3 orders of magnitude higher carrier density and up to 2 orders of magnitude greater conductivity are achieved relative to the undoped samples, with F4TCNQ and Mo(tfd-COCF3)3 demonstrating similar doping efficiencies (associated with the ratio of mobile charges added to the number of dopant molecules incorporated) of 0.031(3) % and 0.024(3) %, respectively. Differences in the doping effectiveness for a given molarity doping solution likely follow from variations in dopant incorporation within the film during the spin coating deposition step.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences