The equivalence of constrained and weighted designs in multiple objective design problems
Several competing objectives may be relevant in the design of an experiment. The competing objectives may not be easy to characterize in a single optimality criterion. One approach to these design problems has been to weight each criterion and find the design that optimizes the weighted average of the criteria. An alternative approach has been to optimize one criterion subject to constraints on the other criteria. An equivalence theorem is presented for the Bayesian constrained design problem. Equivalence theorems are essential in verifying optimality of proposed designs, especially when (as in most nonlinear design problems) numerical optimization is required. This theorem is used to show that the results of Cook and Wong on the equivalence of the weighted and constrained problems apply much more generally. The results are applied to Bayesian nonlinear design problems with several objectives. © 1996 American Statistical Association.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics