Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells.
In humans, skeletal muscle is a major site of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) expression, but its function in this tissue is unclear. We investigated the role of hPPAR-alpha in regulating muscle lipid utilization by studying the effects of a highly selective PPAR-alpha agonist, GW7647, on [(14)C]oleate metabolism and gene expression in primary human skeletal muscle cells. Robust induction of PPAR-alpha protein expression occurred during muscle cell differentiation and corresponded with differentiation-dependent increases in oleate oxidation. In mature myotubes, 48-h treatment with 10-1,000 nmol/l GW7647 increased oleate oxidation dose-dependently, up to threefold. Additionally, GW7647 decreased oleate esterification into myotube triacylglycerol (TAG), up to 45%. This effect was not abolished by etomoxir, a potent inhibitor of beta-oxidation, indicating that PPAR-alpha-mediated TAG depletion does not depend on reciprocal changes in fatty acid catabolism. Consistent with its metabolic actions, GW7647 induced mRNA expression of mitochondrial enzymes that promote fatty acid catabolism; carnitine palmityltransferase 1 and malonyl-CoA decarboxylase increased approximately 2-fold, whereas pyruvate dehydrogenase kinase 4 increased 45-fold. Expression of several genes that regulate glycerolipid synthesis was not changed by GW7647 treatment, implicating involvement of other targets to explain the TAG-depleting effect of the compound. These results demonstrate a role for hPPAR-alpha in regulating muscle lipid homeostasis.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Triglycerides
- Transcription, Genetic
- Transcription Factors
- Receptors, Cytoplasmic and Nuclear
- RNA, Messenger
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- Protein Serine-Threonine Kinases
- Protein Kinases
- Phenylurea Compounds
- Oleic Acid
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Triglycerides
- Transcription, Genetic
- Transcription Factors
- Receptors, Cytoplasmic and Nuclear
- RNA, Messenger
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- Protein Serine-Threonine Kinases
- Protein Kinases
- Phenylurea Compounds
- Oleic Acid