A "smarter-cut" approach to low temperature silicon layer transfer
Silicon wafers were first implanted at room temperature by B+ with 5.0×1012 to 5.0×1015 ions/ cm2 at 180 keV, and subsequently implanted by H2+ with 5.0×1016 ions/cm2 at an energy which locates the H-peak concentration in the silicon wafers at the same position as that of the implanted boron peak. Compared to the H-only implanted samples, the temperature for a B+H coimplanted silicon layer to split from its substrate after wafer bonding during a heat treatment for a given time is reduced significantly. Further reduction of the splitting temperature is accomplished by appropriate prebonding annealing of the B+H coimplanted wafers. Combination of these two effects allows the transfer of a silicon layer from a silicon wafer onto a severely thermally mismatched substrate such as quartz at a temperature as low as 200°C. © 1998 American Institute of Physics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences