Co-precipitation of carbon and oxygen in silicon: The dominant flux criterion
Due to the need of relieving the strain associated with the formation of SiC-2 precipitates in silicon, co-precipitation of carbon with oxygen in silicon wafers may involve a large number of atomic and point defect species: oxygen, carbon, vacancies, and silicon self-interstitials. This allows many parallel mechanisms for strain relief to occur. In the present paper we first reason that this complex system may be reduced to that involving only three species: oxygen, carbon, and self-interstitials; and the strain relief mechanisms may be limited to two: that via self-interstitials and that involving carbon. We then propose a dominant (strain relief species) flux criteria to explain the behavior of carbon and oxygen co-precipitation in silicon. When the carbon flux is dominant, carbon should co-precipitate with oxygen. When the silicon self-interstitial flux is dominant, carbon should not coprecipitate with oxygen, even at high concentrations. Available data, spanning the temperature range of 450- 1000°C and a carbon concentration range of from less than 0.5 x 1016 to 1 x 1018 cm-3, can be explained using this criterion. © 1993 The Japan Society of Applied Physics.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences