Skip to main content
Journal cover image

Sensitivity analysis of a model of mammalian neural membrane.

Publication ,  Journal Article
McIntyre, CC; Grill, WM
Published in: Biological cybernetics
July 1998

The sensitivity of the strength-duration (S-D) relationship to changes in the parameters describing the sodium channel of mammalian neuronal membrane was determined by computer simulation. A space-clamped patch of neuronal membrane was modeled by a parallel nonlinear sodium conductance, linear leakage conductance, and membrane capacitance. Each parameter that governs the activation (m) and inactivation (h) variables of the sodium channel was varied from -50% to +50% of its default value, and for each variation a S-D relationship was generated. Individual changes in six of the eleven parameters (alpha mA, alpha mD, alpha hA, beta mA, beta mB, and beta hB) generated substantial changes in the rheobase current and chronaxie time (Tch) of the model. Changing the parameter values individually did not correct for the model's failure to generate excitation after the release from a long duration hyperpolarization (anode break excitation). Scaling a combination of five parameters (alpha mA, alpha mB, alpha hA, beta mA, and beta hB) by an equal amount produced a model that generated anode break excitation and increased Tch, but also decreased the amplitude of the action potential. To reproduce the amplitude of the action potential, the maximum sodium conductance and sodium Nernst potential were increased. These modifications generated a model that had S-D properties closer to experimental results, could produce anode break excitation, and reproduced the action potential amplitude.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biological cybernetics

DOI

EISSN

1432-0770

ISSN

0340-1200

Publication Date

July 1998

Volume

79

Issue

1

Start / End Page

29 / 37

Related Subject Headings

  • Sodium Channels
  • Neurons
  • Neurology & Neurosurgery
  • Models, Neurological
  • Mammals
  • Kinetics
  • Cybernetics
  • Computer Simulation
  • Cell Membrane
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McIntyre, C. C., & Grill, W. M. (1998). Sensitivity analysis of a model of mammalian neural membrane. Biological Cybernetics, 79(1), 29–37. https://doi.org/10.1007/s004220050455
McIntyre, C. C., and W. M. Grill. “Sensitivity analysis of a model of mammalian neural membrane.Biological Cybernetics 79, no. 1 (July 1998): 29–37. https://doi.org/10.1007/s004220050455.
McIntyre CC, Grill WM. Sensitivity analysis of a model of mammalian neural membrane. Biological cybernetics. 1998 Jul;79(1):29–37.
McIntyre, C. C., and W. M. Grill. “Sensitivity analysis of a model of mammalian neural membrane.Biological Cybernetics, vol. 79, no. 1, July 1998, pp. 29–37. Epmc, doi:10.1007/s004220050455.
McIntyre CC, Grill WM. Sensitivity analysis of a model of mammalian neural membrane. Biological cybernetics. 1998 Jul;79(1):29–37.
Journal cover image

Published In

Biological cybernetics

DOI

EISSN

1432-0770

ISSN

0340-1200

Publication Date

July 1998

Volume

79

Issue

1

Start / End Page

29 / 37

Related Subject Headings

  • Sodium Channels
  • Neurons
  • Neurology & Neurosurgery
  • Models, Neurological
  • Mammals
  • Kinetics
  • Cybernetics
  • Computer Simulation
  • Cell Membrane
  • Animals