The detection of breast microcalcifications with medical ultrasound.
Microcalcifications are small crystals of calcium apatites which form in human tissue through a number of mechanisms. The size, morphology, and distribution of microcalcifications are important indicators in the mammographic screening for and diagnosis of various carcinomas in the breast. Although x-ray mammography is currently the only accepted method for detecting microcalcifications, its efficacy in this regard can be reduced in the presence of dense parenchyma. Current ultrasound scanners do not reliably detect microcalcifications in the size range of clinical interest. The results of theoretical, simulation, and experimental studies focused on the improvement of the ultrasonic visualization of microcalcifications are presented. Methods for estimating the changes in microcalcification detection performance which result from changes in aperture geometry or the presence of an aberrator are presented. An analysis of the relative efficacy of spatial compounding and synthetic receive aperture geometries in the detection of microcalcifications is described. The impact of log compression of the detected image on visualization is discussed. Registered high resolution ultrasound and digital spot mammography images of microcalcifications in excised breast carcinoma tissue and results from the imaging of suspected microcalcifications in vivo are presented.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Ultrasonography, Mammary
- Models, Anatomic
- Humans
- Female
- Calcinosis
- Breast
- Acoustics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Ultrasonography, Mammary
- Models, Anatomic
- Humans
- Female
- Calcinosis
- Breast
- Acoustics