Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics
We report a highly sensitive means of measuring cellular dynamics with a novel interferometer that can measure motional phase changes. The system is based on a modified Michelson interferometer with a composite laser beam of 1550-nm low-coherence light and 775-nm CW light. The sample is prepared on a coverslip that is highly reflective at 775 nm. By referencing the heterodyne phase of the 1550-nm light reflected from the sample to that of the 775-nm light reflected from the coverslip, small motions in the sample are detected, and motional artifacts from vibrations in the interferometer are completely eliminated. We demonstrate that the system is sensitive to motions as small as 3.6 nm and velocities as small as 1 nm/s. Using the instrument, we study transient volume changes of a few (approximately three) cells in a monolayer immersed in weakly hypotonie and hypertonic solutions. © 2001 Optical Society of America.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics