A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.
The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Spectrophotometry, Ultraviolet
- Prodrugs
- Oxidation-Reduction
- Isonicotinic Acids
- Iron Chelating Agents
- Iron
- Hydroxyl Radical
- Hydrogen Peroxide
- Hydrazones
- General Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Spectrophotometry, Ultraviolet
- Prodrugs
- Oxidation-Reduction
- Isonicotinic Acids
- Iron Chelating Agents
- Iron
- Hydroxyl Radical
- Hydrogen Peroxide
- Hydrazones
- General Chemistry