Skip to main content

Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force.

Publication ,  Journal Article
Janke, M; Rudzevich, Y; Molokanova, O; Metzroth, T; Mey, I; Diezemann, G; Marszalek, PE; Gauss, J; Böhmer, V; Janshoff, A
Published in: Nature nanotechnology
April 2009

The physics of nanoscopic systems is strongly governed by thermal fluctuations that produce significant deviations from the behaviour of large ensembles. Stretching experiments of single molecules offer a unique way to study fundamental theories of statistical mechanics, as recently shown for the unzipping of RNA hairpins. Here, we report a molecular design based on oligo calix[4]arene catenanes-calixarene dimers held together by 16 hydrogen bridges-in which loops within the molecules limit how far the calixarene nanocapsules can be separated. This mechanically locked structure tunes the energy landscape of dimers, thus permitting the reversible rupture and rejoining of the individual nanocapsules. Experimental evidence, supported by molecular dynamics simulations, reveals the presence of an intermediate state involving the concerted rupture of the 16 hydrogen bridges. Stochastic modelling using a three-well potential under external load allows reconstruction of the energy landscape.

Duke Scholars

Published In

Nature nanotechnology

DOI

EISSN

1748-3395

ISSN

1748-3387

Publication Date

April 2009

Volume

4

Issue

4

Start / End Page

225 / 229

Related Subject Headings

  • Surface Properties
  • Stress, Mechanical
  • Phenols
  • Particle Size
  • Nanotechnology
  • Nanostructures
  • Nanoscience & Nanotechnology
  • Molecular Conformation
  • Models, Molecular
  • Models, Chemical
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Janke, M., Rudzevich, Y., Molokanova, O., Metzroth, T., Mey, I., Diezemann, G., … Janshoff, A. (2009). Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nature Nanotechnology, 4(4), 225–229. https://doi.org/10.1038/nnano.2008.416
Janke, Matthias, Yuliya Rudzevich, Olena Molokanova, Thorsten Metzroth, Ingo Mey, Gregor Diezemann, Piotr E. Marszalek, Jürgen Gauss, Volker Böhmer, and Andreas Janshoff. “Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force.Nature Nanotechnology 4, no. 4 (April 2009): 225–29. https://doi.org/10.1038/nnano.2008.416.
Janke M, Rudzevich Y, Molokanova O, Metzroth T, Mey I, Diezemann G, et al. Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nature nanotechnology. 2009 Apr;4(4):225–9.
Janke, Matthias, et al. “Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force.Nature Nanotechnology, vol. 4, no. 4, Apr. 2009, pp. 225–29. Epmc, doi:10.1038/nnano.2008.416.
Janke M, Rudzevich Y, Molokanova O, Metzroth T, Mey I, Diezemann G, Marszalek PE, Gauss J, Böhmer V, Janshoff A. Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nature nanotechnology. 2009 Apr;4(4):225–229.

Published In

Nature nanotechnology

DOI

EISSN

1748-3395

ISSN

1748-3387

Publication Date

April 2009

Volume

4

Issue

4

Start / End Page

225 / 229

Related Subject Headings

  • Surface Properties
  • Stress, Mechanical
  • Phenols
  • Particle Size
  • Nanotechnology
  • Nanostructures
  • Nanoscience & Nanotechnology
  • Molecular Conformation
  • Models, Molecular
  • Models, Chemical