Energy barriers to rotation in axially chiral analogues of 4-(dimethylamino)pyridine.
The barriers to enantiomerization of a series of axially chiral biaryl analogues of 4-(dimethylamino)pyridine (DMAP) 1-10 were determined experimentally by means of dynamic HPLC measurements and racemization studies. The barriers to rotation in derivatives 1-6 (based on the bicyclic 5-azaindoline core) were lower than those in the corresponding derivatives 7-10 (based on the monocyclic DMAP core). Semiempirical (PM3), ab initio Hartree-Fock (HF/STO-3G), and density functional theory (DFT/B3LYP/6-31G*) calculations reveal that these differences in barriers to rotation are the result of differing degrees of hybridization of the non-pyridyl nitrogen in the enantiomerization transition states (TSs). The importance of heteroatom hybridization as a factor in determining nonsteric contributions to barriers to rotation in azabiaryls of this type is discussed.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Organic Chemistry
- 3405 Organic chemistry
- 3404 Medicinal and biomolecular chemistry
- 0305 Organic Chemistry
- 0304 Medicinal and Biomolecular Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Organic Chemistry
- 3405 Organic chemistry
- 3404 Medicinal and biomolecular chemistry
- 0305 Organic Chemistry
- 0304 Medicinal and Biomolecular Chemistry