Skip to main content

Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.

Publication ,  Journal Article
Zhou, X; Daubert, JP; Wolf, PD; Smith, WM; Ideker, RE
Published in: Circ Res
January 1993

To study the mechanism of defibrillation and the reason for the increased defibrillation efficacy of biphasic waveforms, the potential gradient in a 32 x 30-mm region of the right ventricle in 15 dogs was progressively lowered in four steps while a strong potential gradient field was maintained throughout the rest of the ventricular myocardium. The volume of right ventricle beneath the plaque was 10 +/- 2% of the total ventricular mass. A 10-msec monophasic (eight dogs) or 5/5-msec biphasic (seven dogs) truncated exponential shock 30% above the defibrillation threshold voltage was given via electrodes on the left ventricular apex and right atrium to create the strong potential gradient field. Simultaneously, a weaker shock with the same waveform but opposite polarity was given via mesh electrodes on either side of the small right ventricular region to cancel part of the potential difference in the region and to create one of the four levels of potential gradient fields. Shock potentials and activations were recorded from 117 epicardial electrodes in the small region, and in one dog global epicardial activations and potentials were recorded from a sock containing 72 electrodes. Each gradient field was tested 10 times for successful defibrillation after 10 seconds of electrically induced fibrillation. For both monophasic and biphasic shocks, the percentage of successful defibrillation attempts decreased (p < 0.05) as the potential gradient decreased in the small region. Defibrillation was successful approximately 80% of the time for a mean +/- SD potential gradient of 5.4 +/- 0.8 V/cm for monophasic shocks and 2.7 +/- 0.3 V/cm for biphasic shocks (p < 0.05). No postshock activation fronts arose from the small region for eight waveform when the gradient was more than 5 V/cm. For both waveforms, the postshock activation fronts after the shocks were markedly different from those just before the shock and exhibited either a focal origin or unidirectional conduction.(ABSTRACT TRUNCATED AT 400 WORDS)

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Circ Res

DOI

ISSN

0009-7330

Publication Date

January 1993

Volume

72

Issue

1

Start / End Page

145 / 160

Location

United States

Related Subject Headings

  • Ventricular Function
  • Ventricular Fibrillation
  • Electroshock
  • Electrophysiology
  • Electric Countershock
  • Dogs
  • Cardiovascular System & Hematology
  • Animals
  • 3202 Clinical sciences
  • 3201 Cardiovascular medicine and haematology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhou, X., Daubert, J. P., Wolf, P. D., Smith, W. M., & Ideker, R. E. (1993). Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res, 72(1), 145–160. https://doi.org/10.1161/01.res.72.1.145
Zhou, X., J. P. Daubert, P. D. Wolf, W. M. Smith, and R. E. Ideker. “Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.Circ Res 72, no. 1 (January 1993): 145–60. https://doi.org/10.1161/01.res.72.1.145.
Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res. 1993 Jan;72(1):145–60.
Zhou, X., et al. “Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.Circ Res, vol. 72, no. 1, Jan. 1993, pp. 145–60. Pubmed, doi:10.1161/01.res.72.1.145.
Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res. 1993 Jan;72(1):145–160.

Published In

Circ Res

DOI

ISSN

0009-7330

Publication Date

January 1993

Volume

72

Issue

1

Start / End Page

145 / 160

Location

United States

Related Subject Headings

  • Ventricular Function
  • Ventricular Fibrillation
  • Electroshock
  • Electrophysiology
  • Electric Countershock
  • Dogs
  • Cardiovascular System & Hematology
  • Animals
  • 3202 Clinical sciences
  • 3201 Cardiovascular medicine and haematology