Skip to main content
Journal cover image

Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study

Publication ,  Journal Article
Pritchard, SG; Strand, AE; McCormack, ML; Davis, MA; Finzi, AC; Jackson, RB; Matamala, R; Rogers, HH; Oren, R
Published in: Global Change Biology.
March 2008

Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free-air-CO₂-enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18-year-old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO₂ availability. Averaged over all 6 years of the study, CO₂ enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO₂ enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO₂-enrichment on fine root proliferation tended to shift from shallow (0-15 cm) to deeper soil depths (15-30) with increasing duration of the study. Diameters of fine roots were initially increased by CO₂-enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m⁻² yr⁻¹ in CO₂-enriched plots and 130 g dw m⁻² yr⁻¹ in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m⁻² yr⁻¹ in CO₂-enriched plots. A lack of consistent CO₂x year effects suggest that the positive effects of CO₂ enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO₂ fumigation). Although CO₂-enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south-eastern pine forests.

Duke Scholars

Published In

Global Change Biology.

DOI

ISSN

1354-1013

Publication Date

March 2008

Volume

14

Issue

3

Start / End Page

588 / 602

Related Subject Headings

  • Ecology
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pritchard, S. G., Strand, A. E., McCormack, M. L., Davis, M. A., Finzi, A. C., Jackson, R. B., … Oren, R. (2008). Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study. Global Change Biology., 14(3), 588–602. https://doi.org/10.1111/j.1365-2486.2007.01523.x
Pritchard, S. G., A. E. Strand, M. L. McCormack, M. A. Davis, A. C. Finzi, R. B. Jackson, R. Matamala, H. H. Rogers, and R. Oren. “Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study.” Global Change Biology. 14, no. 3 (March 2008): 588–602. https://doi.org/10.1111/j.1365-2486.2007.01523.x.
Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, et al. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study. Global Change Biology. 2008 Mar;14(3):588–602.
Pritchard, S. G., et al. “Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study.” Global Change Biology., vol. 14, no. 3, Mar. 2008, pp. 588–602. Epmc, doi:10.1111/j.1365-2486.2007.01523.x.
Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO₂-enrichment: a six-year-minirhizotron study. Global Change Biology. 2008 Mar;14(3):588–602.
Journal cover image

Published In

Global Change Biology.

DOI

ISSN

1354-1013

Publication Date

March 2008

Volume

14

Issue

3

Start / End Page

588 / 602

Related Subject Headings

  • Ecology
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences