Monte Carlo approach for studying microphases applied to the axial next-nearest-neighbor Ising and the Ising-Coulomb models
The equilibrium phase behavior of microphase-forming systems is notoriously difficult to obtain because of the extended metastability of their modulated phases. In this paper we present a systematic simulation methodology for studying layered microphases and apply the approach to two prototypical lattice-based systems: the three-dimensional axial next-nearest-neighbor Ising (ANNNI) and Ising-Coulomb (IC) models. The method involves thermodynamically integrating along a reversible path established between a reference system of free spins under an ordering field and the system of interest. The resulting free-energy calculations unambiguously locate the phase boundaries. Simple phases are not found to play a particularly significant role in the devil's flowers and interfacial roughening plays at most a small role in the ANNNI layered regime. With the help of generalized order parameters, the paramagnetic-modulated critical transition of the ANNNI model is also studied. We confirm the XY universality of the paramagnetic-modulated transition and its isotropic nature. © 2011 American Physical Society.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences