Skip to main content

Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques.

Publication ,  Journal Article
Newton, J; Oldham, M; Thomas, A; Li, Y; Adamovics, J; Kirsch, DG; Das, S
Published in: Med Phys
December 2011

PURPOSE: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. METHODS: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS∕PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS∕PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. RESULTS: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT2 and PRESAGE® measured OFs, PDDs, and profiles. CONCLUSIONS: The combination of independent 2D and 3D measurements was found to be valuable to ensure accurate and comprehensive commissioning. Film measurements were time consuming and challenging due to the difficulty of film alignment in small fields. PRESAGE® 3D measurements were comprehensive and efficient, because alignment errors are negligible, and all parameters for multiple fields could be obtained from a single dosimeter and scan. However, achieving accurate superficial data (within 4 mm) is not yet feasible due to optical surface artifacts.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

December 2011

Volume

38

Issue

12

Start / End Page

6754 / 6762

Location

United States

Related Subject Headings

  • Radiotherapy
  • Radiometry
  • Radiation Dosage
  • Nuclear Medicine & Medical Imaging
  • Mice
  • Equipment Failure Analysis
  • Equipment Design
  • Animals
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Newton, J., Oldham, M., Thomas, A., Li, Y., Adamovics, J., Kirsch, D. G., & Das, S. (2011). Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys, 38(12), 6754–6762. https://doi.org/10.1118/1.3663675
Newton, Joseph, Mark Oldham, Andrew Thomas, Yifan Li, John Adamovics, David G. Kirsch, and Shiva Das. “Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques.Med Phys 38, no. 12 (December 2011): 6754–62. https://doi.org/10.1118/1.3663675.
Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, et al. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys. 2011 Dec;38(12):6754–62.
Newton, Joseph, et al. “Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques.Med Phys, vol. 38, no. 12, Dec. 2011, pp. 6754–62. Pubmed, doi:10.1118/1.3663675.
Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, Das S. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys. 2011 Dec;38(12):6754–6762.

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

December 2011

Volume

38

Issue

12

Start / End Page

6754 / 6762

Location

United States

Related Subject Headings

  • Radiotherapy
  • Radiometry
  • Radiation Dosage
  • Nuclear Medicine & Medical Imaging
  • Mice
  • Equipment Failure Analysis
  • Equipment Design
  • Animals
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering