Skip to main content
Journal cover image

The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

Publication ,  Journal Article
Baron, JS; Hall, EK; Nolan, BT; Finlay, JC; Bernhardt, ES; Harrison, JA; Chan, F; Boyer, EW
Published in: Biogeochemistry.
July 2013

Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biogeochemistry.

DOI

ISSN

0168-2563

Publication Date

July 2013

Volume

114

Issue

1-3

Start / End Page

71 / 92

Related Subject Headings

  • Agronomy & Agriculture
  • 4104 Environmental management
  • 3703 Geochemistry
  • 0502 Environmental Science and Management
  • 0402 Geochemistry
  • 0399 Other Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Baron, J. S., Hall, E. K., Nolan, B. T., Finlay, J. C., Bernhardt, E. S., Harrison, J. A., … Boyer, E. W. (2013). The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry., 114(1–3), 71–92. https://doi.org/10.1007/s10533-012-9788-y
Baron, J. S., E. K. Hall, B. T. Nolan, J. C. Finlay, E. S. Bernhardt, J. A. Harrison, F. Chan, and E. W. Boyer. “The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States.” Biogeochemistry. 114, no. 1–3 (July 2013): 71–92. https://doi.org/10.1007/s10533-012-9788-y.
Baron JS, Hall EK, Nolan BT, Finlay JC, Bernhardt ES, Harrison JA, et al. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry. 2013 Jul;114(1–3):71–92.
Baron, J. S., et al. “The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States.” Biogeochemistry., vol. 114, no. 1–3, July 2013, pp. 71–92. Epmc, doi:10.1007/s10533-012-9788-y.
Baron JS, Hall EK, Nolan BT, Finlay JC, Bernhardt ES, Harrison JA, Chan F, Boyer EW. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry. 2013 Jul;114(1–3):71–92.
Journal cover image

Published In

Biogeochemistry.

DOI

ISSN

0168-2563

Publication Date

July 2013

Volume

114

Issue

1-3

Start / End Page

71 / 92

Related Subject Headings

  • Agronomy & Agriculture
  • 4104 Environmental management
  • 3703 Geochemistry
  • 0502 Environmental Science and Management
  • 0402 Geochemistry
  • 0399 Other Chemical Sciences