Skip to main content
Journal cover image

Creating porcine biomedical models through recombineering.

Publication ,  Journal Article
Rogatcheva, MM; Rund, LA; Swanson, KS; Marron, BM; Beever, JE; Counter, CM; Schook, LB
Published in: Comp Funct Genomics
2004

Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to 'forward genetics', in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the 'reverse genetics' approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse genetics, along with genomics, provides a working definition of a 'genetic model' organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide 'clones' of genetically modified animals.

Duke Scholars

Published In

Comp Funct Genomics

DOI

ISSN

1531-6912

Publication Date

2004

Volume

5

Issue

3

Start / End Page

262 / 267

Location

Egypt

Related Subject Headings

  • 1199 Other Medical and Health Sciences
  • 0604 Genetics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rogatcheva, M. M., Rund, L. A., Swanson, K. S., Marron, B. M., Beever, J. E., Counter, C. M., & Schook, L. B. (2004). Creating porcine biomedical models through recombineering. Comp Funct Genomics, 5(3), 262–267. https://doi.org/10.1002/cfg.404
Rogatcheva, Margarita M., Laurie A. Rund, Kelly S. Swanson, Brandy M. Marron, Jonathan E. Beever, Christopher M. Counter, and Lawrence B. Schook. “Creating porcine biomedical models through recombineering.Comp Funct Genomics 5, no. 3 (2004): 262–67. https://doi.org/10.1002/cfg.404.
Rogatcheva MM, Rund LA, Swanson KS, Marron BM, Beever JE, Counter CM, et al. Creating porcine biomedical models through recombineering. Comp Funct Genomics. 2004;5(3):262–7.
Rogatcheva, Margarita M., et al. “Creating porcine biomedical models through recombineering.Comp Funct Genomics, vol. 5, no. 3, 2004, pp. 262–67. Pubmed, doi:10.1002/cfg.404.
Rogatcheva MM, Rund LA, Swanson KS, Marron BM, Beever JE, Counter CM, Schook LB. Creating porcine biomedical models through recombineering. Comp Funct Genomics. 2004;5(3):262–267.
Journal cover image

Published In

Comp Funct Genomics

DOI

ISSN

1531-6912

Publication Date

2004

Volume

5

Issue

3

Start / End Page

262 / 267

Location

Egypt

Related Subject Headings

  • 1199 Other Medical and Health Sciences
  • 0604 Genetics