Skip to main content
Journal cover image

Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.

Publication ,  Journal Article
Fukumura, D; Yuan, F; Endo, M; Jain, RK
Published in: The American journal of pathology
February 1997

The present study was designed to define the role of nitric oxide (NO) in tumor microcirculation, through the direct intravital microcirculatory observations after administration of NO synthase (NOS) inhibitor and NO donor both regionally and systemically. More specifically, we tested the following hypotheses: 1) endogenous NO derived from tumor vascular endothelium and/or tumor cells increases and/or maintains tumor blood flow, decreases leukocyte-endothelial interactions, and increases vascular permeability, 2) exogenous NO can increase tumor blood flow via vessel dilatation and decrease leukocyte-endothelial interactions, and 3) NO production and tissue responses to NO are tumor dependent. To this end, a murine mammary adenocarcinoma (MCaIV) and a human colon adenocarcinoma (LS174T) were implanted in the dorsal skinfold chamber in C3H and severe combined immunodeficient mice, respectively, and observed by means of intravital fluorescence microscopy. Both regional and systemic inhibition of endogenous NO by N omega-nitro-L-arginine methyl ester (L-NAME; 100 mumol/L superfusion or 10 mg/kg intravenously) significantly decreased vessel diameter and local blood flow rate. The diameter change was dominant on the arteriolar side. Superfusion of NO donor (spermine NO, 100 mumol/L) increased tumor vessel diameter and flow rate, whereas systemic injection of spermine NO (2.62 mg/kg) had no significant effect on these parameters. Rolling and stable adhesion of leukocytes were significantly increased by intravenous injection of L-NAME. In untreated animals, both MCaIV and LS174T tumor vessels were leaky to albumin. Systemic NO inhibition significantly attenuated tumor vascular permeability of MCaIV but not of LS174T tumor. Immunohistochemical studies, using polyclonal antibodies to endothelial NOS and inducible NOS, revealed a diffuse pattern of positive labeling in both MCaIV and LS174T tumors. Nitrite and nitrate levels in tumor interstitial fluid of MCaIV but not of LS174T were significantly higher than that in normal subcutaneous interstitial fluid. These results support our hypotheses regarding the microcirculatory response to NO in tumors. Modulation of NO level in tumors is a potential strategy for altering tumor hemodynamics and thus improving oxygen, drug, gene vector, and effector cell delivery to solid tumors.

Duke Scholars

Published In

The American journal of pathology

EISSN

1525-2191

ISSN

0002-9440

Publication Date

February 1997

Volume

150

Issue

2

Start / End Page

713 / 725

Related Subject Headings

  • Regional Blood Flow
  • Pathology
  • Nitrites
  • Nitric Oxide
  • Nitrates
  • Neoplasm Transplantation
  • Microcirculation
  • Mice, SCID
  • Mice, Inbred C3H
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fukumura, D., Yuan, F., Endo, M., & Jain, R. K. (1997). Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. The American Journal of Pathology, 150(2), 713–725.
Fukumura, D., F. Yuan, M. Endo, and R. K. Jain. “Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.The American Journal of Pathology 150, no. 2 (February 1997): 713–25.
Fukumura D, Yuan F, Endo M, Jain RK. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. The American journal of pathology. 1997 Feb;150(2):713–25.
Fukumura, D., et al. “Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.The American Journal of Pathology, vol. 150, no. 2, Feb. 1997, pp. 713–25.
Fukumura D, Yuan F, Endo M, Jain RK. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. The American journal of pathology. 1997 Feb;150(2):713–725.
Journal cover image

Published In

The American journal of pathology

EISSN

1525-2191

ISSN

0002-9440

Publication Date

February 1997

Volume

150

Issue

2

Start / End Page

713 / 725

Related Subject Headings

  • Regional Blood Flow
  • Pathology
  • Nitrites
  • Nitric Oxide
  • Nitrates
  • Neoplasm Transplantation
  • Microcirculation
  • Mice, SCID
  • Mice, Inbred C3H
  • Mice