Application of a label-free, gel-free quantitative proteomics method for ecotoxicological studies of small fish species.
Although two-dimensional electrophoresis (2D-GE) remains the basis for many ecotoxicoproteomic analyses, newer non-gel-based methods are beginning to be applied to overcome throughput and coverage limitations of 2D-GE. The overall objective of our research was to apply a comprehensive, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approach to identify and quantify differentially expressed hepatic proteins from female fathead minnows exposed to fadrozole, a potent inhibitor of estrogen synthesis. Female fathead minnows were exposed to 0 (control), 0.04, and 1.0 μg of fadrozole/L of water for 4 days, and proteomic analysis was performed. Proteins were extracted and digested, and proteolytic peptides were separated via high-resolution one- or two-dimensional (1-D or 2-D) ultrapressure liquid chromatography (UPLC) and analyzed by tandem mass spectrometry. Mass spectra were searched against the National Center for Biotechnology Information (NCBI) ray-finned fish ( Actinopterygii ) database, resulting in identification of 782 unique proteins by single-dimension UPLC. When multidimensional LC analysis (2-D) was performed, an average increase of 1.9× in the number of identified proteins was observed. Differentially expressed proteins in fadrozole exposures were consistent with changes in liver function, including a decline in concentrations of vitellogenin as well as other proteins associated with endocrine function and cholesterol synthesis. Overall, these results demonstrate that a gel-free, label-free proteomic analysis method can successfully be utilized to determine differentially expressed proteins in small fish species after toxicant exposure.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Water Pollutants, Chemical
- Tandem Mass Spectrometry
- Proteomics
- Proteome
- Metabolic Networks and Pathways
- Fish Proteins
- Female
- Fadrozole
- Environmental Sciences
- Ecotoxicology
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Water Pollutants, Chemical
- Tandem Mass Spectrometry
- Proteomics
- Proteome
- Metabolic Networks and Pathways
- Fish Proteins
- Female
- Fadrozole
- Environmental Sciences
- Ecotoxicology