An overview of snow photochemistry: Evidence, mechanisms and impacts
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NO
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
- 0201 Astronomical and Space Sciences