Skip to main content
Journal cover image

Generic metric to quantify quorum sensing activation dynamics.

Publication ,  Journal Article
Pai, A; Srimani, JK; Tanouchi, Y; You, L
Published in: ACS synthetic biology
April 2014

Quorum sensing (QS) enables bacteria to sense and respond to changes in their population density. It plays a critical role in controlling different biological functions, including bioluminescence and bacterial virulence. It has also been widely adapted to program robust dynamics in one or multiple cellular populations. While QS systems across bacteria all appear to function similarly-as density-dependent control systems-there is tremendous diversity among these systems in terms of signaling components and network architectures. This diversity hampers efforts to quantify the general control properties of QS. For a specific QS module, it remains unclear how to most effectively characterize its regulatory properties in a manner that allows quantitative predictions of the activation dynamics of the target gene. Using simple kinetic models, here we show that the dominant temporal dynamics of QS-controlled target activation can be captured by a generic metric, 'sensing potential', defined at a single time point. We validate these predictions using synthetic QS circuits in Escherichia coli. Our work provides a computational framework and experimental methodology to characterize diverse natural QS systems and provides a concise yet quantitative criterion for selecting or optimizing a QS system for synthetic biology applications.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS synthetic biology

DOI

EISSN

2161-5063

ISSN

2161-5063

Publication Date

April 2014

Volume

3

Issue

4

Start / End Page

220 / 227

Related Subject Headings

  • Synthetic Biology
  • Signal Transduction
  • Quorum Sensing
  • Models, Biological
  • Escherichia coli
  • 3102 Bioinformatics and computational biology
  • 3101 Biochemistry and cell biology
  • 0903 Biomedical Engineering
  • 0601 Biochemistry and Cell Biology
  • 0304 Medicinal and Biomolecular Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pai, A., Srimani, J. K., Tanouchi, Y., & You, L. (2014). Generic metric to quantify quorum sensing activation dynamics. ACS Synthetic Biology, 3(4), 220–227. https://doi.org/10.1021/sb400069w
Pai, Anand, Jaydeep K. Srimani, Yu Tanouchi, and Lingchong You. “Generic metric to quantify quorum sensing activation dynamics.ACS Synthetic Biology 3, no. 4 (April 2014): 220–27. https://doi.org/10.1021/sb400069w.
Pai A, Srimani JK, Tanouchi Y, You L. Generic metric to quantify quorum sensing activation dynamics. ACS synthetic biology. 2014 Apr;3(4):220–7.
Pai, Anand, et al. “Generic metric to quantify quorum sensing activation dynamics.ACS Synthetic Biology, vol. 3, no. 4, Apr. 2014, pp. 220–27. Epmc, doi:10.1021/sb400069w.
Pai A, Srimani JK, Tanouchi Y, You L. Generic metric to quantify quorum sensing activation dynamics. ACS synthetic biology. 2014 Apr;3(4):220–227.
Journal cover image

Published In

ACS synthetic biology

DOI

EISSN

2161-5063

ISSN

2161-5063

Publication Date

April 2014

Volume

3

Issue

4

Start / End Page

220 / 227

Related Subject Headings

  • Synthetic Biology
  • Signal Transduction
  • Quorum Sensing
  • Models, Biological
  • Escherichia coli
  • 3102 Bioinformatics and computational biology
  • 3101 Biochemistry and cell biology
  • 0903 Biomedical Engineering
  • 0601 Biochemistry and Cell Biology
  • 0304 Medicinal and Biomolecular Chemistry