Anita Disney
Assistant Professor of Neurobiology

The primary goal of our research is to determine the role(s) that neuromodulators such as acetylcholine, noradrenaline, serotonin, and oxytocin play in specifying functional connectivity across the wired circuitry of the brain, and how this dynamic circuit specification supports flexible behavior.

Key questions we are working on in the lab at the moment include:

  1. When and how do acetylcholine and serotonin determine which information makes it into the primary visual cortex (V1) from the thalamus. This is a critical question because you’re very limited in the ways that you can make decisions based on visual information if it does not make it into the cortex.
  2. What is (are?) the ligand(s) for dopamine receptors in V1, given that these receptors are found in all layers, but dopaminergic axons are only found in layers 1 and 6. If the ligand is not dopamine from the ventral tegmental area (VTA), this changes profoundly what dopamine signaling in V1 is likely ‘for’. If it *is* dopamine from the VTA, how does traverse the 1+mm from layer 1 or 6 to receptors in the middle layers of cortex on a time scale relevant for behavior?
  3. How do oxytocin and acetylcholine modulate feedback into V1 from higher visual areas? How does this modulation modify receptive fields?
  4. Over what spatial and temporal scale is acetylcholine released into V4 during a visual attention task? And how does this relate to attention-related changes in spiking activity?

Other questions we are interested in include the ways that modulatory systems signal to each other to enable homeostatic control of state-specifying extracellular signals in cortex? And how does the extracellular space influence diffusion of modulators beyond synapses? How do gonadal hormones such as estrogen interact with modulatory systems? What happens to neuromodulatory signaling as we age?

We are a question-driven lab, and so the techniques we employ are diverse: we use a novel biosensor that combines classical electrophysiological recording capabilities with the ability to measure the local chemical environment at high spatial and temporal resolution; we combine electrophysiological recording with pharmacological manipulation to examine causal relationships between neuromodulation, neuronal activity and behavioral performance; and we study the structure of neuromodulatory systems in the neocortex from a comparative perspective at both the light and electron microscopic levels.

Current Appointments & Affiliations

Contact Information

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.