Overview
The overall goal of my research program is to utilize an interdisciplinary approach to first advance the basic understanding of mechanotransduction on multiple scales and then use this knowledge to guide the development of new treatments for mechanosensitive diseases. Our work combines principles and techniques from protein engineering, molecular biology, soft matter physics, cell and developmental biology, biomaterials engineering, automated image analysis, and state of the art live cell microscopy. Specifically, we engineer and use biosensors that report the tension across specific proteins in living cells through changes in the color of light they emit. This technology enables dynamic measurements of proteins and sub-cellular structures that are under load. Unlike more traditional techniques that measure the entirety of cellular force output, the ability of these sensors to measure mechanical stress at the molecular level means they are innately compatible with concepts and approaches common in molecular biology and biophysics.