Robert Bryant
Phillip Griffiths Professor of Mathematics

My research concerns problems in the geometric theory of partial differential equations.  More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy.

Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems.  Because of their built-in invariance properties, these systems often have special features that make them difficult to treat by the standard tools of analysis, and so my approach uses ideas and techniques from the theory of exterior differential systems, a collection of tools for analyzing such PDE systems that treats them in a coordinate-free way, focusing instead on their properties that are invariant under diffeomorphism or other transformations.

I’m particularly interested in geometric structures constrained by natural conditions, such as Riemannian manifolds whose curvature tensor satisfies some identity or that supports some additional geometric structure, such as a parallel differential form or other geometric structures that satisfy some partial integrability conditions and in constructing examples of such geometric structures, such as Finsler metrics with constant flag curvature.

I am also the Director of the Simons Collaboration Special Holonomy in Geometry, Analysis, and Physics, and a considerable focus of my research and that of my students is directed towards problems in this area.

Current Research Interests

Exterior differential systems, Finsler geometry, differential geometry, geometry of partial differential equations

Office Hours

Tuesdays and Thursdays, 10:30-12:00PM, and by appointment

Current Appointments & Affiliations

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.