Overview
But what is the nature of the causal process by which emotion drives thought and behavior? I argue that it is a form of downward causation, of a sort that occurs in many hierarchical systems. Consider a neutrally buoyant balloon filled with gas and hanging in a room. If the balloon as a whole is moved -- say 2 inches to the left -- this large-scale movement causes all of the gas molecules within it (as well as the molecules in the plastic skin of the balloon) to move, on average, 2 inches to the left. A similar sort of top-down causation occurs, it seems, in the emotion-behavior and emotion-thought relationship. The evidence is that these relationships seem to follow certain key principles of hierarchy theory. 1. Rates. Lower levels move quickly relative to the higher level. The gas molecules in a balloon typically move quickly relative to the balloon as a whole. Likewise, thought and behavior are fast relative to change in emotional state. 2. Causal asymmetry. Lower-level units cannot, as individuals, much affect the higher level. A single gas molecule cannot much affect a whole balloon. Likewise, individual thoughts and behaviors ordinarily do not much affect an emotion. Rather, an emotion hovers more or less unchanging, in the background, while thoughts and behaviors aimed at satisfying that emotion play out. 3. Vagueness. Lower-level units do not directly interact with higher levels and therefore "perceive" them only "vaguely." Thus, thoughts and behaviors are clear and distinct, but we perceive our emotions only vaguely. 4. Downward causation. Higher levels exert their causal influence on lower-level units via boundary conditions, and therefore higher-level control is not precise, with the result that lower-level units have considerable freedom. Consistent with this, in two similar higher-level systems, the sequence of behaviors of lower-level units could be very different. The movements of individual gas molecules in two very similar balloons will be very different. Likewise, the same emotion, the same motivation, in two different people is consistent with their thinking and behaving very differently. (Although presumably some very general similarities can be found. To the extent that the two share the same emotion, the goals they are pursuing are similar. Analogously, the movements of the gas molecules in the balloon share a general similarity, in that they all move two inches to the left on average.)
My past work has been mainly on large-scale evolutionary trends, that is, trends that include a number of higher taxa and that span a large portion of the history of life. Features that have been said to show such trends include complexity, size, fitness, and others. In my research, I worked mainly on developing operational measures of these features, devising methods for testing empirically whether trends have occurred, and studying the causes and correlates of trends. Most of this work so far has been on trends in complexity. In a recent book (Biology’s First Law 2010) with the philosopher Robert Brandon, we argue that complexity change in evolution is partly governed by what we call the Zero-Force Evolutionary Law (ZFEL). The law says that in the absence of selection and constraint, complexity – in the sense of differentiation among parts – will tend to increase. Further, we argue, even when forces and constraints are present, a tendency for complexity to increase is always present. The rationale is simply that in the absence of selection or constraint, the parts of an organism will tend spontaneously to accumulate variation, and therefore to become more different from each other. Thus, for example, in a multicellular organism, in the absence of selection and constraint, the degree of differentiation among cells should increase, leading eventually to an increase in the number of cell types. As we argue in the book, the law applies at all hierarchical levels (molecules, organelles, cells, etc.). It also applies above the level of the organism, to differences among individuals in populations, and to differences among species and among higher taxa. In other words, the ZFEL says that diversity also tends spontaneously to increase. The ZFEL is universal, applying to all evolutionary lineages, at all times, in all places, everywhere life occurs. A consequence is that any complete evolutionary explanation for change in complexity or diversity will necessarily include the ZFEL as one component.
Other interests include the philosophy of biology generally. (See my textbook coauthored with philosopher Alex Rosenberg, Philosophy Of Biology: A Contemporary Introduction 2009.) More specifically: 1. The connections among the various evolutionary forces acting on animal form -- functional, formal, and phylogenetic. 2. Animal psychology generally. 3. The relationship between morality and human nature.