Overview
Dr. Greg Wang is Full Professor at Department of Pharmacology and Cancer Biology, Department of Pathology (adjunct) and Duke Cancer Institute, Duke University. He received his Ph.D. degree from University of California, San Diego, followed by a postdoctoral training with Dr. C David Allis at Rockefeller University. Before joining Duke in 2023, he has been a full-time faculty member since 2011 at Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina (UNC) at Chapel Hill. Dr. Wang’s research programs broadly focus on mechanistic understandings of how chemical modifications of chromatin (including DNA methylation and histone modifications) regulate gene expression and cell fate determination during development, and how their deregulations lead to human diseases, notably cancer. His laboratory recently identified and characterized novel proteins that specifically bind to histone lysine methylation. These histone modification regulators are crucially involved in gene and genome regulation, development, immunity, and/or cancerous transformation. Importantly, discovery of small-molecule inhibitors to target chromatin modulators has become an area of intensive investigation and holds great promise for therapies. Dr. Wang’s research excellence and expertise in the broad fields of chromatin biology and cancer epigenetics have earned him grant funding of NIH and private foundations such as an American Cancer Society Research Scholar, an American Society of Hematology Scholar in basic science, a Janet Rowley Medical Research award from Gabrielle's Angel Foundation for Cancer Research, and a Leukemia and Lymphoma Society Scholar. Greg Wang also receives the recognitions from the institute such as the Philip and Ruth Hettleman Prize for Artistic and Scholarly Achievement (2019, UNC) and the Yang Family Biomedicine Scholar (2020, UNC), as well as the American Society for Biochemistry & Molecular Biology (ASBMB) Young Investigator Award (2021). One of Dr. Wang’s research goals is to yield potential drug candidates with preclinical cancer models, which shall pave a way for translating new therapeutic approaches in future.