Research Interests
Background: Open quantum systems at the nanoscale is the broad topic of research in my group, with a particular focus on the generation of correlation between particles. Our work ranges from projects trying to nail down realistic behavior in well-characterized systems, to more speculative projects reaching beyond regimes investigated experimentally to date. The methods used are both analytical and numerical, and the work is closely linked to experiments.
Recent Work: My recent work has addressed correlations in both electronic systems (quantum wires, quantum dots, and interfaces between qualitatively different quantum materials) and photonic systems. While work on photonic systems is on the back burner at the moment, I have focused on two electronic projects this year:
1. Interface between a quantum Hall insulator and a superconductor: Extensive numerical and analytical results on electron-hole hybrid quasi-particles at this interface. First set of results published with Finkelstein group. Theory papers in preparation. [with grad student Alexey Bondarev and undergrad Will Klein]
2. Numerical study of two-dimensional interaction models: Improved quantum Monte Carlo (QMC) approaches to 2D strongly correlated systems makes possible the study of phase diagrams. We have characterized the quantum phase transition and thermal critical regime for two classic condensed matter models (one quantum antiferromagnet and one with attractive interactions). [spearheaded by collaborator Ji-Woo Lee (Korea)]