Joseph Yuan-Chieh Lo
Professor in Radiology

My research uses computer vision and machine learning to improve medical imaging, focusing on breast and CT imaging. There are three specific projects:

(1) We design deep learning models to diagnose breast cancer from mammograms. We perform single-shot lesion detection, multi-task segmentation/classification, and image synthesis. Our goal is to improve radiologist diagnostic performance and empower patients to make personalized treatment decisions. This work is funded by NIH, Dept of Defense, Cancer Research UK, and other agencies.

(2) We create "digital twin" anatomical models that are based on actual patient data and thus contain highly realistic anatomy. With customized 3D printing, these virtual phantoms can also be rendered into physical form to be scanned on actual imaging devices, which allows us to assess image quality in new ways that are clinically relevant.

(3) We are building a computer-aided triage platform to classify multiple diseases across multiple organs in chest-abdomen-pelvis CT scans. Our hospital-scale data sets have hundreds of thousands of patients. This work includes natural language processing to analyze radiology reports as well as deep learning models for organ segmentation and disease classification.

Current Appointments & Affiliations

Contact Information

  • 2424 Erwin Road, Suite 302, Ravin Advanced Imaging Labs, Durham, NC 27705
  • 2424 Erwin Road, Suite 302, Ravin Advanced Imaging Labs, Durham, NC 27705
  • uri icon Google Scholar
  • uri icon Home Page

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.