James H. Nolen
Professor of Mathematics
I study partial differential equations and probability, which have been used to model many phenomena in the natural sciences and engineering. In some cases, the parameters for a partial differential equation are known only approximately, or they may have fluctuations that are best described statistically. So, I am especially interested in differential equations modeling random phenomena and whether one can describe the statistical properties of solutions to these equations. Asymptotic analysis has been a common theme in much of my research. Current research interests include: reaction diffusion equations, homogenization of PDEs, stochastic dynamics, interacting particle systems.
Office Hours
Mondays 10:30am-12:00
Wednesdays 2:00pm-3:30
Wednesdays 2:00pm-3:30
Current Appointments & Affiliations
- Professor of Mathematics, Mathematics, Trinity College of Arts & Sciences 2021
Contact Information
- 120 Science Drive, Durham, NC 27708
- Box 90320, Durham, NC 27708-0320
-
nolen@math.duke.edu
(919) 660-2862
-
http://math.duke.edu/~nolen/
- Background
-
Education, Training, & Certifications
- Ph.D., University of Texas, Austin 2006
- B.S., Davidson College 2000
-
Previous Appointments & Affiliations
- Associate Professor of Mathematics, Mathematics, Trinity College of Arts & Sciences 2016 - 2021
- Assistant Professor of Mathematics, Mathematics, Trinity College of Arts & Sciences 2009 - 2015
-
Leadership & Clinical Positions at Duke
- Director of Postdoctoral Training, Mathematics Department, 2019 - 2023
-
Academic Positions Outside Duke
- Postdoctoral Scholar, Mathematics Department, Stanford University. 2006 - 2008
- Research
-
Selected Grants
- RTG: Training Tomorrow's Workforce in Analysis and Applications awarded by National Science Foundation 2021 - 2026
- Support for Southeastern Probability Conference awarded by National Science Foundation 2020 - 2024
- CAREER: Research and training in stochastic dynamics awarded by National Science Foundation 2014 - 2020
- Analysis of Fluctuations for PDEs with Random Coefficients awarded by National Science Foundation 2010 - 2015
-
Fellowships, Supported Research, & Other Grants
- NSF Postdoctoral Research Fellowship awarded by National Science Foundation 2006 - 2008
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Tough, O., & Nolen, J. (2022). The Fleming-Viot Process with McKean-Vlasov Dynamics. Electronic Journal of Probability, 27, 1–72. https://doi.org/10.1214/22-EJP820Full Text Link to Item
-
Berestycki, J., Brunet, E., Nolen, J., & Penington, S. (2022). Brownian bees in the infinite swarm limit. Annals of Probability, 50(6), 2133–2177. https://doi.org/10.1214/22-AOP1578Full Text Link to Item
-
Berestycki, J., Brunet, É., Nolen, J., & Penington, S. (2021). A free boundary problem arising from branching Brownian motion with selection. Transactions of the American Mathematical Society, 374(09), 6269–6329. https://doi.org/10.1090/tran/8370Full Text
-
Hebbar, P., Koralov, L., & Nolen, J. (2020). Asymptotic behavior of branching diffusion processes in periodic media. Electronic Journal of Probability, 25, 1–40. https://doi.org/10.1214/20-EJP527Full Text Open Access Copy
-
Lim, T. S., Lu, Y., & Nolen, J. H. (2020). Quantitative propagation of chaos in a bimolecular chemical reaction-diffusion model. Siam Journal on Mathematical Analysis, 52(2), 2098–2133. https://doi.org/10.1137/19M1287687Full Text
-
Nolen, J. H., Cohn, S., Iyer, G., & Pego, R. (2020). Anomalous diffusion in comb-shaped domains and graphs. Communications in Mathematical Sciences, 18(7), 1815–1862. https://doi.org/10.4310/CMS.2020.v18.n7.a2Full Text Link to Item
-
Nolen, J., Roquejoffre, J.-M., & Ryzhik, L. (2019). Refined long-time asymptotics for Fisher–KPP fronts. Communications in Contemporary Mathematics, 21(07), 1850072–1850072. https://doi.org/10.1142/s0219199718500724Full Text
-
Henderson, N. T., Pablo, M., Ghose, D., Clark-Cotton, M. R., Zyla, T. R., Nolen, J., … Lew, D. J. (2019). Ratiometric GPCR signaling enables directional sensing in yeast. Plos Biol, 17(10), e3000484. https://doi.org/10.1371/journal.pbio.3000484Full Text Open Access Copy Link to Item
-
Lu, J., Lu, Y., & Nolen, J. (2019). Scaling limit of the Stein variational gradient descent: The mean field regime. Siam Journal on Mathematical Analysis, 51(2), 648–671. https://doi.org/10.1137/18M1187611Full Text
-
Lu, Y., Lu, J., & Nolen, J. (2019). Accelerating Langevin Sampling with Birth-death (Unpublished).Link to Item
-
Nolen, J. H., Cristali, I., Ranjan, V., Steinberg, J., Beckman, E., Durrett, R., & Junge, M. (2018). Block size in Geometric(p)-biased permutations. Electronic Communications in Probability, 23, 1–10. https://doi.org/10.1214/18-ECP182Full Text Link to Item
-
Nolen, J., & Mourrat, J.-C. (2017). Scaling limit of the corrector in stochastic homogenization. Annals of Applied Probability, 27(2), 944–959. https://doi.org/10.1214/16-AAP1221Full Text Link to Item
-
Nolen, J., Roquejoffre, J.-M., & Ryzhik, L. (2017). Convergence to a single wave in the Fisher-KPP equation. Chinese Annals of Mathematics, Series B, 38, 629–646. https://doi.org/10.1007/s11401-017-1087-4Full Text Link to Item
-
Hamel, F., Nolen, J., Roquejoffre, J. M., & Ryzhik, L. (2016). The logarithmic delay of KPP fronts in a periodic medium. Journal of the European Mathematical Society, 18(3), 465–505. https://doi.org/10.4171/JEMS/595Full Text
-
Bhamidi, S., Hannig, J., Lee, C. Y., & Nolen, J. (2015). The importance sampling technique for understanding rare events in Erdős-Rényi random graphs. Electronic Journal of Probability, 20. https://doi.org/10.1214/EJP.v20-2696Full Text
-
Nolen, J., Roquejoffre, J. M., & Ryzhik, L. (2015). Power-Like Delay in Time Inhomogeneous Fisher-KPP Equations. Communications in Partial Differential Equations, 40(3), 475–505. https://doi.org/10.1080/03605302.2014.972744Full Text
-
Lu, J., & Nolen, J. (2015). Reactive trajectories and the transition path process. Probability Theory and Related Fields, 161(1–2), 195–244. https://doi.org/10.1007/s00440-014-0547-yFull Text Open Access Copy
-
Gloria, A., & Nolen, J. (2015). A Quantitative Central Limit Theorem for the Effective Conductance on the Discrete Torus. Communications on Pure and Applied Mathematics. https://doi.org/10.1002/cpa.21614Full Text Link to Item
-
Huckemann, S., Mattingly, J. C., Miller, E., & Nolen, J. (2015). Sticky central limit theorems at isolated hyperbolic planar singularities. Electronic Journal of Probability, 20, 1–34. https://doi.org/10.1214/EJP.v20-3887Full Text Open Access Copy
-
Nolen, J. (2015). Normal approximation for the net flux through a random conductor. Stochastic Partial Differential Equations: Analysis and Computations. https://doi.org/10.1007/s40072-015-0068-4Full Text
-
Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., … Skwerer, S. (2013). Sticky central limit theorems on open books. The Annals of Applied Probability, 23, 2238–2258. https://doi.org/10.1214/12-AAP899Full Text Open Access Copy
-
Nolen, J. (2013). Normal approximation for a random elliptic equation. Probability Theory and Related Fields, 1–40. https://doi.org/10.1007/s00440-013-0517-9Full Text
-
Hamel, F., Nolen, J., Roquejoffre, J. M., & Ryzhik, L. (2012). A short proof of the logarithmic Bramson correction in Fisher-KPP equations (Accepted). Networks and Heterogeneous Media.Link to Item
-
Matic, I., & Nolen, J. (2012). A Sublinear Variance Bound for Solutions of a Random Hamilton-Jacobi Equation. Journal of Statistical Physics, 149(2), 342–361. https://doi.org/10.1007/s10955-012-0590-yFull Text
-
Mellet, A., & Nolen, J. (2012). Capillary drops on a rough surface. Interfaces and Free Boundaries, 14(2), 167–184. https://doi.org/10.4171/IFB/278Full Text
-
Nolen, J., Roquejoffre, J. M., Ryzhik, L., & Zlatoš, A. (2012). Existence and Non-Existence of Fisher-KPP Transition Fronts. Archive for Rational Mechanics and Analysis, 203(1), 217–246. https://doi.org/10.1007/s00205-011-0449-4Full Text
-
Cardaliaguet, P., Nolen, J., & Souganidis, P. E. (2011). Homogenization and Enhancement for the G-Equation. Archive for Rational Mechanics and Analysis, 199(2), 527–561. https://doi.org/10.1007/s00205-010-0332-8Full Text
-
Nolen, J. (2011). An invariance principle for random traveling waves in one dimension. Siam Journal on Mathematical Analysis, 43(1), 153–188. https://doi.org/10.1137/090746513Full Text
-
Nolen, J. (2011). A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 6(2), 167–194. https://doi.org/10.3934/nhm.2011.6.167Full Text
-
Nolen, J., & Novikov, A. (2011). Homogenization of the G-equation with incompressible random drift in two dimensions. Communications in Mathematical Sciences, 9(2), 561–582. https://doi.org/10.4310/CMS.2011.v9.n2.a11Full Text
-
Nolen, J., Xin, J., & Yu, Y. (2009). Bounds on front speeds for inviscid and viscous G-equations. Methods and Applications of Analysis, 16(4).Link to Item
-
Nolen, J., & Papanicolaou, G. (2009). Fine scale uncertainty in parameter estimation for elliptic equations. Inverse Problems, 25(11). https://doi.org/10.1088/0266-5611/25/11/115021Full Text
-
Mellet, A., Nolen, J., Roquejoffre, J. M., & Ryzhik, L. (2009). Stability of generalized transition fronts. Communications in Partial Differential Equations, 34(6), 521–552. https://doi.org/10.1080/03605300902768677Full Text
-
Nolen, J., & Ryzhik, L. (2009). Traveling waves in a one-dimensional heterogeneous medium. Annales De L’Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 26(3), 1021–1047. https://doi.org/10.1016/j.anihpc.2009.02.003Full Text
-
Nolen, J., & Xin, J. (2009). KPP Fronts in 1D Random Drift. Discrete and Continuous Dynamical Systems B, 11(2).Link to Item
-
Nolen, J., & Xin, J. (2009). Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows. Annales De L’Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 26(3), 815–839. https://doi.org/10.1016/j.anihpc.2008.02.005Full Text
-
Nolen, J., & Xin, J. (2009). KPP fronts in a one-dimensional random drift. Discrete and Continuous Dynamical Systems Series B, 11(2), 421–442. https://doi.org/10.3934/dcdsb.2009.11.421Full Text
-
Nolen, J., & Xin, J. (2008). Variational principle and reaction-diffusion front speeds in random flows. Iciam07 Proceedings, 1040701–1040702.
-
Nolen, J., & Xin, J. (2008). Computing reactive front speeds in random flows by variational principle. Physica D: Nonlinear Phenomena, 237(23), 3172–3177. https://doi.org/10.1016/j.physd.2008.04.024Full Text
-
Nolen, J., Papanicolaou, G., & Pironneau, O. (2008). A framework for adaptive multiscale methods for elliptic problems. Multiscale Modeling and Simulation, 7(1), 171–196. https://doi.org/10.1137/070693230Full Text
-
Nolen, J., & Xin, J. (2007). Variational Principle of KPP Front Speeds in Temporally Random Shear Flows with Applications. Communications in Mathematical Physics, 269, 493–532.Link to Item
-
Nolen, J., & Xin, J. (2005). A variational principle based study of KPP minimal front speeds in random shears. Nonlinearity, 18(4), 1655–1675. https://doi.org/10.1088/0951-7715/18/4/013Full Text
-
Nolen, J., & Xin, J. (2005). Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete and Continuous Dynamical Systems, 13(5), 1217–1234. https://doi.org/10.3934/dcds.2005.13.1217Full Text
-
Nolen, J., Rudd, M., & Xin, J. (2005). Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dynamics of Pde, 2, 1–24.Link to Item
-
Boye, D. M., Valdes, T. S., Nolen, J. H., Silversmith, A. J., Brewer, K. S., Anderman, R. E., & Meltzer, R. S. (2004). Transient and persistent spectral hole burning in Eu3+-doped sol-gel produced SiO2 glass. Journal of Luminescence, 108(1–4), 43–47. https://doi.org/10.1016/j.jlumin.2004.01.008Full Text
-
Nolen, J., & Xin, J. (2004). Min-Max Variational Principles and Fronts Speeds in Random Shear Flows. Methods and Applications of Analysis, 11(4), 635–644.Link to Item
-
Nolen, J., & Xin, J. (2003). Reaction-diffusion front speeds in spatially-temporally periodic shear flows. Multiscale Modeling and Simulation, 1(4), 554–570. https://doi.org/10.1137/S1540345902420234Full Text
-
Boye, D. M., Silversmith, A. J., Nolen, J., Rumney, L., Shaye, D., Smith, B. C., & Brewer, K. S. (2001). Red-to-green up-conversion in Er-doped SiO2 and SiO2-TiO2 sol-gel silicate glasses. Journal of Luminescence, 94–95, 279–282. https://doi.org/10.1016/S0022-2313(01)00301-5Full Text
-
-
Conference Papers
-
Nolen, J., Pavliotis, G. A., & Stuart, A. M. (2012). Multiscale modelling and inverse problems. In Lecture Notes in Computational Science and Engineering (Vol. 83, pp. 1–34). https://doi.org/10.1007/978-3-642-22061-6_1Full Text
-
-
- Teaching & Mentoring
-
Recent Courses
- HOUSECS 59: House Course 2023
- MATH 557: Introduction to Partial Differential Equations 2023
- MATH 790-90: Minicourse in Advanced Topics 2023
- MATH 290-1: Topics in Mathematical Analysis 2022
- MATH 545: Introduction to Stochastic Calculus 2022
- MATH 555: Ordinary Differential Equations 2022
- MATH 340: Advanced Introduction to Probability 2021
- MATH 690-70: Topics in Applied Mathematics 2021
- MATH 740: Advanced Introduction to Probability 2021
- STA 231: Advanced Introduction to Probability 2021
- Scholarly, Clinical, & Service Activities
-
Service to the Profession
-
Service to Duke
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.