Norbert Matthias Linke
Assistant Professor of Physics
Current Appointments & Affiliations
- Assistant Professor of Physics, Physics, Trinity College of Arts & Sciences 2022
Contact Information
- Background
-
Education, Training, & Certifications
- Ph.D., University of Oxford (United Kingdom) 2012
- A.B., University of Ulm (Germany) 2008
- M.S., University of Ulm (Germany) 2008
-
Previous Appointments & Affiliations
- Scholar in Residence of Physics, Physics, Trinity College of Arts & Sciences 2022
- Recognition
-
In the News
-
OCT 29, 2022 Department of Physics
-
- Research
-
Selected Grants
- Advanced Monolithic 3D ion trap for Quantum Sensing and Information Processing (Phase II) awarded by Translume, Inc. 2022 - 2024
- A Medium-Distance Quantum Network with Fiber-Ready Trapped Atomic Ions awarded by University of Maryland 2022 - 2023
- NSF Convergence Accelerator Phase II awarded by University of Maryland, College Park 2022 - 2023
- Compact, room-temperature, high-optical access ion trap for quantum entanglement awarded by Translume, Inc. 2021 - 2023
-
External Relationships
- Tecnológico de Monterrey
- University of Maryland
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Linke, N. M. “Let the ions sing.” Nature Physics, January 1, 2023. https://doi.org/10.1038/s41567-022-01922-3.Full Text
-
Zhu, Y., Z. Zhang, B. Sundar, A. M. Green, C. Huerta Alderete, N. H. Nguyen, K. R. A. Hazzard, and N. M. Linke. “Multi-round QAOA and advanced mixers on a trapped-ion quantum computer.” Quantum Science and Technology 8, no. 1 (January 1, 2023). https://doi.org/10.1088/2058-9565/ac91ef.Full Text
-
Zhu, D., Z. P. Cian, C. Noel, A. Risinger, D. Biswas, L. Egan, Y. Zhu, et al. “Cross-platform comparison of arbitrary quantum states.” Nature Communications 13, no. 1 (November 2022): 6620. https://doi.org/10.1038/s41467-022-34279-5.Full Text
-
Daniel, A. K., Y. Zhu, C. H. Alderete, V. Buchemmavari, A. M. Green, N. H. Nguyen, T. G. Thurtell, A. Zhao, N. M. Linke, and A. Miyake. “Quantum computational advantage attested by nonlocal games with the cyclic cluster state.” Physical Review Research 4, no. 3 (July 1, 2022). https://doi.org/10.1103/PhysRevResearch.4.033068.Full Text
-
Schuster, T., B. Kobrin, P. Gao, I. Cong, E. T. Khabiboulline, N. M. Linke, M. D. Lukin, C. Monroe, B. Yoshida, and N. Y. Yao. “Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol.” Physical Review X 12, no. 3 (July 1, 2022). https://doi.org/10.1103/PhysRevX.12.031013.Full Text
-
Nguyen, N. H., M. C. Tran, Y. Zhu, A. M. Green, C. H. Alderete, Z. Davoudi, and N. M. Linke. “Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions.” Prx Quantum 3, no. 2 (June 1, 2022). https://doi.org/10.1103/PRXQuantum.3.020324.Full Text
-
Green, Alaina M., A. Elben, C Huerta Alderete, Lata Kh Joshi, Nhung H. Nguyen, Torsten V. Zache, Yingyue Zhu, Bhuvanesh Sundar, and Norbert M. Linke. “Experimental Measurement of Out-of-Time-Ordered Correlators at Finite Temperature.” Physical Review Letters 128, no. 14 (April 2022): 140601. https://doi.org/10.1103/physrevlett.128.140601.Full Text
-
Dhara, P., N. M. Linke, E. Waks, S. Guha, and K. P. Seshadreesan. “Multiplexed quantum repeaters based on dual-species trapped-ion systems.” Physical Review A 105, no. 2 (February 1, 2022). https://doi.org/10.1103/PhysRevA.105.022623.Full Text
-
Pandit, T., A. M. Green, C. H. Alderete, N. M. Linke, and R. Uzdin. “Bounds on the recurrence probability in periodically -driven quantum systems.” Quantum 6 (January 1, 2022). https://doi.org/10.22331/Q-2022-03-17-670.Full Text
-
Davoudi, Z., N. M. Linke, and G. Pagano. “Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach.” Physical Review Research 3, no. 4 (December 1, 2021). https://doi.org/10.1103/PhysRevResearch.3.043072.Full Text
-
Singh, S., C. H. Alderete, R. Balu, C. Monroe, N. M. Linke, and C. M. Chandrashekar. “Quantum circuits for the realization of equivalent forms of one-dimensional discrete-time quantum walks on near-term quantum hardware.” Physical Review A 104, no. 6 (December 1, 2021). https://doi.org/10.1103/PhysRevA.104.062401.Full Text
-
Gustafson, E., Y. Zhu, P. Dreher, N. M. Linke, and Y. Meurice. “Real-time quantum calculations of phase shifts using wave packet time delays.” Physical Review D 104, no. 5 (September 1, 2021). https://doi.org/10.1103/PhysRevD.104.054507.Full Text
-
Francis, Akhil, Daiwei Zhu, Cinthia Huerta Alderete, Sonika Johri, Xiao Xiao, James K. Freericks, Christopher Monroe, Norbert M. Linke, and Alexander F. Kemper. “Many-body thermodynamics on quantum computers via partition function zeros.” Science Advances 7, no. 34 (August 2021): eabf2447. https://doi.org/10.1126/sciadv.abf2447.Full Text
-
Nguyen, N. H., M. Li, A. M. Green, C. Huerta Alderete, Y. Zhu, D. Zhu, K. R. Brown, and N. M. Linke. “Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer.” Physical Review Applied 16, no. 2 (August 1, 2021). https://doi.org/10.1103/PhysRevApplied.16.024057.Full Text
-
Blümel, Reinhold, Nikodem Grzesiak, Nhung H. Nguyen, Alaina M. Green, Ming Li, Andrii Maksymov, Norbert M. Linke, and Yunseong Nam. “Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer.” Physical Review Letters 126, no. 22 (June 2021): 220503. https://doi.org/10.1103/physrevlett.126.220503.Full Text
-
Monroe, C., W. C. Campbell, L. M. Duan, Z. X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, et al. “Programmable quantum simulations of spin systems with trapped ions.” Reviews of Modern Physics 93, no. 2 (April 7, 2021). https://doi.org/10.1103/RevModPhys.93.025001.Full Text
-
Zhu, D., S. Johri, N. H. Nguyen, C. H. Alderete, K. A. Landsman, N. M. Linke, C. Monroe, and A. Y. Matsuura. “Probing many-body localization on a noisy quantum computer.” Physical Review A 103, no. 3 (March 1, 2021). https://doi.org/10.1103/PhysRevA.103.032606.Full Text
-
Diaz, Nieves, Maria Juarez, Caterina Cancrini, Maximilian Heeg, Pere Soler-Palacín, Andrew Payne, Geoffrey I. Johnston, et al. “Seletalisib for Activated PI3Kδ Syndromes: Open-Label Phase 1b and Extension Studies.” Journal of Immunology (Baltimore, Md. : 1950) 205, no. 11 (December 2020): 2979–87. https://doi.org/10.4049/jimmunol.2000326.Full Text
-
Zhu, D., S. Johri, N. M. Linke, K. A. Landsman, C. Huerta Alderete, N. H. Nguyen, A. Y. Matsuura, T. H. Hsieh, and C. Monroe. “Generation of thermofield double states and critical ground states with a quantum computer.” Proceedings of the National Academy of Sciences of the United States of America 117, no. 41 (October 2020): 25402–6. https://doi.org/10.1073/pnas.2006337117.Full Text
-
Huerta Alderete, C., Shivani Singh, Nhung H. Nguyen, Daiwei Zhu, Radhakrishnan Balu, Christopher Monroe, C. M. Chandrashekar, and Norbert M. Linke. “Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer.” Nature Communications 11, no. 1 (July 2020): 3720. https://doi.org/10.1038/s41467-020-17519-4.Full Text
-
Linke, Norbert, and Markus Müller. “Mit Ionen ist zu rechnen.” Physik in Unserer Zeit 51, no. 4 (July 2020): 168–75. https://doi.org/10.1002/piuz.202001571.Full Text
-
Murali, P., N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete. “Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study.” Ieee Micro 40, no. 3 (May 1, 2020): 73–80. https://doi.org/10.1109/MM.2020.2985683.Full Text
-
Shehab, O., K. Landsman, Y. Nam, D. Zhu, N. M. Linke, M. Keesan, R. C. Pooser, and C. Monroe. “Toward convergence of effective-field-theory simulations on digital quantum computers.” Physical Review A 100, no. 6 (December 16, 2019). https://doi.org/10.1103/PhysRevA.100.062319.Full Text
-
Zhu, D., N. M. Linke, M. Benedetti, K. A. Landsman, N. H. Nguyen, C. H. Alderete, A. Perdomo-Ortiz, et al. “Training of quantum circuits on a hybrid quantum computer.” Science Advances 5, no. 10 (October 2019): eaaw9918. https://doi.org/10.1126/sciadv.aaw9918.Full Text
-
Landsman, K. A., Y. Wu, P. H. Leung, D. Zhu, N. M. Linke, K. R. Brown, L. Duan, and C. Monroe. “Two-qubit entangling gates within arbitrarily long chains of trapped ions.” Physical Review A 100, no. 2 (August 26, 2019). https://doi.org/10.1103/PhysRevA.100.022332.Full Text Open Access Copy
-
Figgatt, C., A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, and C. Monroe. “Parallel entangling operations on a universal ion-trap quantum computer.” Nature 572, no. 7769 (August 2019): 368–72. https://doi.org/10.1038/s41586-019-1427-5.Full Text
-
Kalev, A., A. Kyrillidis, and N. M. Linke. “Validating and certifying stabilizer states.” Physical Review A 99, no. 4 (April 30, 2019). https://doi.org/10.1103/PhysRevA.99.042337.Full Text
-
Landsman, K. A., C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, and C. Monroe. “Verified quantum information scrambling.” Nature 567, no. 7746 (March 2019): 61–65. https://doi.org/10.1038/s41586-019-0952-6.Full Text
-
Linke, N. M., S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe. “Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer.” Physical Review A 98, no. 5 (November 26, 2018). https://doi.org/10.1103/PhysRevA.98.052334.Full Text
-
Seif, A., K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe, and M. Hafezi. “Machine learning assisted readout of trapped-ion qubits.” Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 17 (August 17, 2018). https://doi.org/10.1088/1361-6455/aad62b.Full Text
-
Solmeyer, N., N. M. Linke, C. Figgatt, K. A. Landsman, R. Balu, G. Siopsis, and C. Monroe. “Demonstration of a Bayesian quantum game on an ion-trap quantum computer.” Quantum Science and Technology 3, no. 4 (July 10, 2018). https://doi.org/10.1088/2058-9565/aacf0e.Full Text
-
Debnath, S., N. M. Linke, S. -. T. Wang, C. Figgatt, K. A. Landsman, L. -. M. Duan, and C. Monroe. “Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain.” Physical Review Letters 120, no. 7 (February 2018): 073001. https://doi.org/10.1103/physrevlett.120.073001.Full Text
-
Leung, Pak Hong, Kevin A. Landsman, Caroline Figgatt, Norbert M. Linke, Christopher Monroe, and Kenneth R. Brown. “Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force.” Physical Review Letters 120, no. 2 (January 2018): 020501. https://doi.org/10.1103/physrevlett.120.020501.Full Text Open Access Copy
-
Figgatt, C., D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe. “Complete 3-Qubit Grover search on a programmable quantum computer.” Nature Communications 8, no. 1 (December 2017): 1918. https://doi.org/10.1038/s41467-017-01904-7.Full Text
-
Linke, Norbert M., Mauricio Gutierrez, Kevin A. Landsman, Caroline Figgatt, Shantanu Debnath, Kenneth R. Brown, and Christopher Monroe. “Fault-tolerant quantum error detection.” Science Advances 3, no. 10 (October 2017): e1701074. https://doi.org/10.1126/sciadv.1701074.Full Text
-
Linke, Norbert M., Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. “Experimental comparison of two quantum computing architectures.” Proceedings of the National Academy of Sciences of the United States of America 114, no. 13 (March 2017): 3305–10. https://doi.org/10.1073/pnas.1618020114.Full Text
-
Aude Craik, D. P. L., N. M. Linke, M. A. Sepiol, T. P. Harty, J. F. Goodwin, C. J. Ballance, D. N. Stacey, A. M. Steane, D. M. Lucas, and D. T. C. Allcock. “High-fidelity spatial and polarization addressing of Ca + 43 qubits using near-field microwave control.” Physical Review A 95, no. 2 (February 27, 2017). https://doi.org/10.1103/PhysRevA.95.022337.Full Text
-
Ballance, C. J., T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. “High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.” Physical Review Letters 117, no. 6 (August 2016): 060504. https://doi.org/10.1103/physrevlett.117.060504.Full Text
-
Debnath, S., N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. “Demonstration of a small programmable quantum computer with atomic qubits.” Nature 536, no. 7614 (August 2016): 63–66. https://doi.org/10.1038/nature18648.Full Text
-
Ballance, C. J., V. M. Schäfer, J. P. Home, D. J. Szwer, S. C. Webster, D. T. C. Allcock, N. M. Linke, et al. “Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.” Nature 528, no. 7582 (December 2015): 384–86. https://doi.org/10.1038/nature16184.Full Text
-
Harty, T. P., D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas. “High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit.” Physical Review Letters 113, no. 22 (November 2014): 220501. https://doi.org/10.1103/physrevlett.113.220501.Full Text
-
Aude Craik, D. P. L., N. M. Linke, T. P. Harty, C. J. Ballance, D. M. Lucas, A. M. Steane, and D. T. C. Allcock. “Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap.” Applied Physics B: Lasers and Optics 114, no. 1–2 (January 1, 2014): 3–10. https://doi.org/10.1007/s00340-013-5716-7.Full Text
-
Linke, N. M., C. J. Ballance, and D. M. Lucas. “Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+.” Optics Letters 38, no. 23 (December 2013): 5087–89. https://doi.org/10.1364/ol.38.005087.Full Text
-
Allcock, D. T. C., T. P. Harty, C. J. Ballance, B. C. Keitch, N. M. Linke, D. N. Stacey, and D. M. Lucas. “A microfabricated ion trap with integrated microwave circuitry.” Applied Physics Letters 102, no. 4 (January 28, 2013). https://doi.org/10.1063/1.4774299.Full Text
-
Allcock, D. T. C., T. P. Harty, H. A. Janacek, N. M. Linke, C. J. Ballance, A. M. Steane, D. M. Lucas, et al. “Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap.” Applied Physics B: Lasers and Optics 107, no. 4 (June 1, 2012): 913–19. https://doi.org/10.1007/s00340-011-4788-5.Full Text
-
Linke, N. M., D. T. C. Allcock, D. J. Szwer, C. J. Ballance, T. P. Harty, H. A. Janacek, D. N. Stacey, A. M. Steane, and D. M. Lucas. “Background-free detection of trapped ions.” Applied Physics B: Lasers and Optics 107, no. 4 (June 1, 2012): 1175–80. https://doi.org/10.1007/s00340-011-4870-z.Full Text
-
Allcock, D. T. C., J. A. Sherman, D. N. Stacey, A. H. Burrell, M. J. Curtis, G. Imreh, N. M. Linke, et al. “Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect.” New Journal of Physics 12 (May 17, 2010). https://doi.org/10.1088/1367-2630/12/5/053026.Full Text
-
Fickler, R., W. Schnitzler, N. M. Linke, F. Schmidt-Kaler, and K. Singer. “Optimised focusing ion optics for an ultracold deterministic single ion source targeting nm resolution.” Journal of Modern Optics 56, no. 18–19 (October 1, 2009): 2061–75. https://doi.org/10.1080/09500340903180509.Full Text
-
Schnitzler, W., N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer. “Deterministic ultracold ion source targeting the Heisenberg limit.” Physical Review Letters 102, no. 7 (February 2009): 070501. https://doi.org/10.1103/physrevlett.102.070501.Full Text
-
-
Conference Papers
-
Dreher, P., E. Gustafson, Y. Zhu, N. M. Linke, and Y. Meurice. “Real-time Quantum Calculations of Phase Shifts On NISQ Hardware Platforms Using Wavepacket Time Delay.” In Proceedings of Science, Vol. 396, 2022.
-
“2D Quantum Metamaterials.” WORLD SCIENTIFIC, 2019. https://doi.org/10.1142/11438.Full Text
-
Murali, P., N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete. “Full-stack, real-system quantum computer studies: Architectural comparisons and design insights.” In Proceedings International Symposium on Computer Architecture, 527–40, 2019. https://doi.org/10.1145/3307650.3322273.Full Text
-
Pagano, G., P. Becker, A. Carter, M. Cetina, K. Collins, C. Crocker, L. Egan, et al. “Quantum computing and simulation with trapped atomic ions.” In Optics Infobase Conference Papers, Vol. Part F165-QIM 2019, 2019. https://doi.org/10.1364/QIM.2019.S2D.2.Full Text
-
Linke, N. M., D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. “Comparing the architectures of the first programmable quantum computers.” In Optics Infobase Conference Papers, Vol. Part F81-EQEC 2017, 2017.
-
-
Preprints
-
Zhu, Yingyue, Alaina M. Green, Nhung H. Nguyen, C Huerta Alderete, Elijah Mossman, and Norbert M. Linke. “Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion chain,” February 17, 2023.Link to Item
-
Green, Alaina M., Tanmoy Pandit, C Huerta Alderete, Norbert M. Linke, and Raam Uzdin. “Probing The Unitarity of Quantum Evolution Through Periodic Driving,” December 21, 2022.Link to Item
-
Vedaie, Seyed Shakib, Eduardo J. Páez, Nhung H. Nguyen, Norbert M. Linke, and Barry C. Sanders. “Bespoke Pulse Design for Robust Rapid Two-Qubit Gates with Trapped Ions,” December 1, 2022.Link to Item
-
Li, Ming, Nhung H. Nguyen, Alaina M. Green, Jason Amini, Norbert M. Linke, and Yunseong Nam. “Realizing two-qubit gates through mode engineering on a trapped-ion quantum computer,” August 2, 2022.Link to Item
-
Alderete, C Huerta, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, Norbert M. Linke, and B. M. Rodríguez-Lara. “Para-particle oscillator simulations on a trapped ion quantum computer,” July 6, 2022.Link to Item
-
Rad, Ali, Alireza Seif, and Norbert M. Linke. “Surviving The Barren Plateau in Variational Quantum Circuits with Bayesian Learning Initialization,” March 4, 2022.Link to Item
-
Green, Alaina M., A. Elben, C Huerta Alderete, Lata Kh Joshi, Nhung H. Nguyen, Torsten V. Zache, Yingyue Zhu, Bhuvanesh Sundar, and Norbert M. Linke. “Experimental Measurement of Out-of-Time-Ordered Correlators at Finite Temperature,” December 3, 2021.Link to Item
-
Daniel, Austin K., Yinyue Zhu, C Huerta Alderete, Vikas Buchemmavari, Alaina M. Green, Nhung H. Nguyen, Tyler G. Thurtell, Andrew Zhao, Norbert M. Linke, and Akimasa Miyake. “Quantum computational advantage attested by nonlocal games with the cyclic cluster state,” October 8, 2021.Link to Item
-
Alderete, C Huerta, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, B. M. Rodríguez-Lara, and Norbert M. Linke. “Experimental realization of para-particle oscillators,” August 11, 2021.Link to Item
-
Zhu, Daiwei, Ze-Pei Cian, Crystal Noel, Andrew Risinger, Debopriyo Biswas, Laird Egan, Yingyue Zhu, et al. “Cross-Platform Comparison of Arbitrary Quantum Computations,” July 23, 2021.Link to Item
-
Alderete, C Huerta, Shivani Singh, Nhung H. Nguyen, Daiwei Zhu, Radhakrishnan Balu, Christopher Monroe, C. M. Chandrashekar, and Norbert M. Linke. “Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer,” February 6, 2020.Link to Item
-
Linke, Norbert M., Sonika Johri, Caroline Figgatt, Kevin A. Landsman, Anne Y. Matsuura, and Christopher Monroe. “Measuring the Renyi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer,” December 22, 2017.Link to Item
-
Debnath, S., N. M. Linke, S. -. T. Wang, C. Figgatt, K. A. Landsman, L. -. M. Duan, and C. Monroe. “Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain,” November 1, 2017.Link to Item
-
Linke, N. M., D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. “Experimental Comparison of Two Quantum Computing Architectures,” February 6, 2017.Link to Item
-
Linke, N. M., M. Gutierrez, K. A. Landsman, C. Figgatt, S. Debnath, K. R. Brown, and C. Monroe. “Fault-tolerant quantum error detection,” November 21, 2016.Link to Item
-
Debnath, S., N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. “Demonstration of a small programmable quantum computer with atomic qubits,” March 14, 2016.Link to Item
-
Craik, DPL Aude, N. M. Linke, M. A. Sepiol, T. P. Harty, J. F. Goodwin, C. J. Ballance, D. N. Stacey, A. M. Steane, D. M. Lucas, and D. T. C. Allcock. “High-fidelity spatial and polarization addressing of Ca-43 qubits using near-field microwave control,” January 11, 2016.Link to Item
-
Ballance, C. J., T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. “High-fidelity quantum logic gates using trapped-ion hyperfine qubits,” December 14, 2015.Link to Item
-
Ballance, C. J., V. M. Schaefer, J. P. Home, D. J. Szwer, S. C. Webster, D. T. C. Allcock, N. M. Linke, et al. “Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes,” May 15, 2015.Link to Item
-
Linke, N. M., C. J. Ballance, and D. M. Lucas. “Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in $^{43}$Ca$^+$,” October 28, 2013.Link to Item
-
Craik, DPL Aude, N. M. Linke, T. P. Harty, C. J. Ballance, D. M. Lucas, A. M. Steane, and D. T. C. Allcock. “Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap,” August 9, 2013.Link to Item
-
Allcock, D. T. C., T. P. Harty, C. J. Ballance, B. C. Keitch, N. M. Linke, D. N. Stacey, and D. M. Lucas. “A microfabricated ion trap with integrated microwave circuitry,” October 11, 2012.Link to Item
-
Linke, N. M., D. T. C. Allcock, D. J. Szwer, C. J. Ballance, T. P. Harty, H. A. Janacek, D. N. Stacey, A. M. Steane, and D. M. Lucas. “Background-free detection of trapped ions,” October 25, 2011.Link to Item
-
-
- Scholarly, Clinical, & Service Activities
-
Presentations & Appearances
- From Ion Canons to Quantum Computers. Versatile Applications of Trapped Ions (VATI). November 18, 2022 2022
- Quantum simulations on an analog-digital trapped-ion quantum system. University of Innsbruck, Austria. July 11, 2022 2022
- Quantum simulations on an analog-digital trapped-ion quantum system. NISQ22: Simulating Quantum Many-Body Systems on Noisy Intermediate-Scale Quantum Computers. Max Planck Institute for the Physics of Complex Systems, Dresden, Germany. April 26, 2022 2022
- A trapped-ion quantum computer in user-facility mode. DQC Inaugural. Duke Quantum Center. April 9, 2022 2022
- Trapped Ion Systems. Quantum Simulations of Strongly Correlated Systems. InQubator for Quantum Simulation. November 9, 2021 2021
- Quantum computing with trapped ions. Webinar. OPTICA. October 26, 2021 2021
- Building a quantum world with trapped ions. Colloquium. UCLA Department of Physics. October 14, 2021 2021
- Quantum algorithms with trapped ions. Workshop on Ultra-stable optical oscillators from quantum coherent and entangled systems. European Metrology project. September 21, 2021 2021
- A quantum architecture based on trapped ions. Physics Colloquium. University of Mainz, Germany. June 29, 2021 2021
- Quantum simulations using the motional states of trapped ions. Okinawa Institute of Science and Technology. June 21, 2021 2021
- Quantum algorithms with trapped ions. Physics Colloquium. George Washington University. April 8, 2021 2021
- A quantum architecture based on trapped ions. Physics Colloquium. Duke University. January 20, 2021 2021
- A trapped ion quantum architecture. seminar. IQC Waterloo, Canada. October 22, 2020 2020
- A trapped ion quantum architecture. Physics and Astronomy Department AMO seminar. Rice University. October 21, 2020 2020
- A trapped-ion quantum architecture . Quantum Information Section Seminar. Mexican Physical Society. September 10, 2020 2020
- NISQ-era quantum devices for HEP. Snowmass CompF06. August 11, 2020 2020
- Digital quantum simulations on a trapped ion QC. Quantum Simulation for Fundamental Science Workshop. University of Washington. August 5, 2020 2020
- Quantum field theory simulations on a trapped ion quantum computer. seminar. University of Iowa. July 7, 2020 2020
- A trapped-ion quantum architecture . Physics Colloquium. University of Innsbruck. March 14, 2020 2020
- A Quantum computer based on trapped ions. Physics Colloquium. Norther Illinois University. February 20, 2020 2020
- Simulating physical models on a trapped-ion quantum computer. Seminar. Institute of Nuclear Theory, University of Washington. January 27, 2020 2020
- How to construct, optimize, and scale a quantum computer based on trapped ions. seminar. Los Alamos National Laboratory. January 22, 2020 2020
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.