Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Frederic J. Seidler

Assistant Research Professor Emeritus of Pharmacology & Cancer Biology
Pharmacology & Cancer Biology
Duke Box 3813, Durham, NC 27710
C161 Lev Sci Res Ctr, Durham, NC 27708

Overview


We study the effect of drugs, hormones and environmental factors on the intracellular and extracellular biochemical signals that govern the development of mammalian neural tissues, with particular emphasis on the biochemistry and molecular biology underlying control of replication, differentiation, synaptogenesis and onset of synaptic function.  Ongoing projects comprise the following areas: (1) the role of endocrine and neurotrophic factors in transmitter and receptor choice by developing neurons; (2) effects of drugs of abuse, hormonal imbalances, environmental contaminants and fetal/neonatal hypoxia, on nervous system development; (3) control of fetal/neonatal cardiovascular and respiratory function by the immature nervous system, with particular emphasis on parturition and Sudden Infant Death Syndrome; (4) molecular mechanisms of brain dysfunction in the elderly (Alzheimer's Disease and Depression); (5) control of gene expression in developing cells by trophic factors that operate through defined second messenger systems and protooncogenes.
Research is directed toward understanding the interaction of drugs, hormones and environmental factors with the developing nervous system. The role of these factors in mediating development of nerve cells is a major effort as they influence the subsequent structural and functional state of nervous system and its targets. The approach is multidisciplinary. Ongoing projects involve three areas:

1. Mechanisms regulating the development of synapses and the role of endocrine and other trophic factors (i.e. neurotransmitters) in this regulation. Long-term structural and functional consequences of altered development are evaluated.
2. Adverse effects of exogenous agents on nervous system development, emphasizing the identification of mechanisms by which behavioral or physiological injury occurs. Under investigation are: Drugs of abuse (especially cocaine and nicotine), hormonal imbalances, environmental contaminants (pesticides, flame retardants, etc.), food additives, stress, intrauterine growth retardation and hypoxia.
3. Molecular mechanisms of human brain dysfunction in the elderly, specifically Alzheimer's disease and depression.

New directions are concentrating on neurotransmitter and hormonal regulation of cell differentiation and gene expression:
1. Neurotransmitter control of cell differentiation in the central nervous system. The role of transient receptor expression and transduction in effecting the switch from replication to differentiation and the molecular (epigenetic) mechanism underlying control of early immediate genes.
2.  Consequence of early life exposures on subsequent development of adult decease.  Altered vulnerabilities resulting from multiple exposure events (i.e. fetal nicotine x neonatal pesticide).
3.  Establishing in vitro models to explore the mechanisms abnormalities.

Current Appointments & Affiliations


Assistant Research Professor Emeritus of Pharmacology & Cancer Biology · 2022 - Present Pharmacology & Cancer Biology, Basic Science Departments

Education, Training & Certifications


Duke University · 1986 Ph.D.