Julia K.L. Walker
Professor in the School of Nursing, with tenure

Broadly, my research focuses on the role for G protein-coupled receptors in the pathophysiology of asthma. Asthma is a complex disease characterized by airway inflammation, hyperresponsiveness and remodeling. G protein-coupled receptors figure largely in the pathology and treatment of this disease. For example, beta-agonists, the rescue medication inhaled by asthmatics, act at airway smooth muscle beta2-adrenergic receptors (β2-AR) to relax the airways. However, excessive use of beta-agonists has been associated with clinical worsening of asthma control and increased mortality. β2-ARs can signal through two well characterized and independent signaling pathways; a G protein-dependent pathway and a beta-arrestin-dependent pathway. Previously we showed that mice lacking beta-arrestin-2 do not develop the symptoms of allergic airway inflammatory disease and that T cell and eosinophil migration to the lung is impaired in these mice. Similarly, others have shown that the asthma phenotype is significantly reduced in mice lacking global expression of β2-ARs. Thus, we hypothesize that the beta-arrestin-dependent signaling arm, downstream of the β2-AR, is responsible for promoting the asthma phenotype. The translational relevance of this work is high given that the determination of the signaling pathway that is utilized by β2-ARs can be influenced by the molecular signature of the agonist. Thus, our work could lead to the discovery of a β2-AR ligand that bronchodilates the airways without promoting asthma symptoms. In addition to transducing β2-AR-mediated signaling to promote asthma, we hypothesize that beta-arrestin-2 also mediates chemokine receptor signaling and thus, the inflammatory component of asthma. Chemokines, released in response to allergens, dictate the migration of immune cells to the lung in asthma and chemokine receptors are known to signal via both the G-dependent and beta-arrestin-dependent pathways.

Current Appointments & Affiliations

Contact Information

  • 331 Med Sci Res Bldg, DUMC Box 3322, Durham, NC 27710
  • Duke Box 3322, Durham, NC 27710

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.