Tso-Pang Yao
Professor of Pharmacology and Cancer Biology
My laboratory studies the regulatory functions of protein acetylation in cell signaling and human disease. We focus on a class of protein deacetylases, HDACs, which we have discovered versatile functions beyond gene transcription. We wish to use knowledge of HDAC biology to develop smart and rational clinical strategies for HDAC inhibitors, a growing class of compounds that show potent anti-tumor and other clinically relevant activities. Currently, there two major research major areas in the laboratory: aging/age-related disease, and mitochondrial biology/cancer metabolism.
(1) Quality control (QC) autophagy in aging and neurodegenerative disease. The accumulation of damaged proteins and mitochondria is prominently linked to aging and age-associated disease, including neurodegeneration, metabolic disorders and cancer. Autophagy has emerged as specialized degradation machinery for the disposal of damaged protein aggregates and mitochondria, two common denominators in neurodegenerative diseases. We have discovered that this form of quality control (QC) autophagy is controlled by a ubiquitin-binding deacetylase, HDAC6. Using both mouse and cell models, we are investigating how HDAC6 enforces QC autophagy and its importance in neurodegenerative disease and metabolic disorders. The potential of HDAC6 as a therapeutic target is being actively pursued.
(2) HDAC in mitochondria function and quality control. Acetyl-CoA is the donor of acetyl group for protein acetylation and numerous metabolic reactions. Remarkably, many mitochondrial enzymes and proteins are subject to acetylation. We are interested in characterizing the roles of HDAC in mitochondrial adaptation to changing metabolic demands and elucidating the intimate relationship between metabolism and protein acetylation.
(3) HDAC, skeletal muscle remodeling, regeneration and neuromuscular disease. Skeletal muscle undergoes active remodeling in response to change in neural inputs or damage. Loss in neural input causes dramatic muscle dysfunction and disease, such as ALS. We have discovered that neural activity controls muscle phenotype through HDAC4, whose activity becomes deregulated in ALS patients. We have characterized this novel HDAC4-dependent signaling pathway and are evaluating modulators of this pathway for potential clinical utility in motor neuron disease.
Current Appointments & Affiliations
- Professor of Pharmacology and Cancer Biology, Pharmacology & Cancer Biology, Basic Science Departments 2012
- Assistant Professor in Radiation Oncology, Radiation Oncology, Clinical Science Departments 2020
- Member of the Duke Cancer Institute, Duke Cancer Institute, Institutes and Centers 1998
Contact Information
- C166, Lsrc, Box 3813 DUMC, Durham, NC 27710
- Duke Box 3813, Durham, NC 27710
-
yao00001@mc.duke.edu
(919) 613-8654
- Background
-
Education, Training, & Certifications
- Ph.D., University of California - San Diego 1994
-
Previous Appointments & Affiliations
- Assistant Professor in Radiation Oncology, Radiation Oncology, Clinical Science Departments 2006 - 2020
- Associate Professor of Pharmacology & Cancer Biology, Pharmacology & Cancer Biology, Basic Science Departments 2005 - 2011
- Assistant Research Professor in Radiation Oncology, Radiation Oncology, Clinical Science Departments 1998 - 2006
- Assistant Professor of Pharmacology & Cancer Biology, Pharmacology & Cancer Biology, Basic Science Departments 1998 - 2005
- Instructor, Temporary in Pharmacology & Cancer Biology, Pharmacology & Cancer Biology, Basic Science Departments 1998
- Recognition
-
In the News
-
JAN 29, 2015 Duke Research Blog
-
- Research
-
Selected Grants
- Oxidative stress mechanisms regulating gamma-globin gene transcription in sickle cell disease awarded by National Institutes of Health 2022 - 2026
- Roles of mitochondrial dynamics and mtDNA in senescence awarded by National Institutes of Health 2022 - 2026
- Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease awarded by National Institutes of Health 2020 - 2025
- Genetic and Genomics Training Grant awarded by National Institutes of Health 2020 - 2025
- Pharmacological Sciences Training Grant awarded by National Institutes of Health 2020 - 2025
- Regulation of LRRK2 in lysosomal stress response awarded by National Institutes of Health 2023 - 2025
- Genetics Training Grant awarded by National Institutes of Health 1979 - 2020
- Pharmacological Sciences Training Program awarded by National Institutes of Health 1975 - 2020
- Duke University Program in Environmental Health awarded by National Institute of Environmental Health Sciences 2013 - 2019
- The role of MEST (mesoderm specific transcript) in rhabdomyosarcoma awarded by St. Baldrick's Foundation 2015 - 2016
- Cancer Biology Training Grant awarded by National Cancer Institute 1993 - 2016
- Histone deacetylase 4 and neural activity-dependent muscle remodeling and atrophy awarded by National Institutes of Health 2008 - 2014
- HDAC10, Mitochondria and autophagy-a novel network targeted by HDAC inhibitors awarded by National Institutes of Health 2009 - 2011
- Multispectral Imaging Flow Cytometer Core awarded by National Institutes of Health 2010 - 2011
- Control of P53 Tumor Suppressor by CBP/p300 awarded by National Institutes of Health 2001 - 2006
-
External Relationships
- National Health Research Institute, Taiwan
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Tang, Willcyn, John Thundyil, Grace Gui Yin Lim, Teddy J. W. Tng, Sean Qing Zhang Yeow, Aditya Nair, Chou Chai, Tso-Pang Yao, and Kah-Leong Lim. “Parkin regulates neuronal lipid homeostasis through SREBP2-lipoprotein lipase pathway-implications for Parkinson's disease.” Hum Mol Genet 32, no. 9 (April 20, 2023): 1466–82. https://doi.org/10.1093/hmg/ddac297.Full Text Link to Item
-
Lin, Chao-Chieh, Jin Yan, Meghan D. Kapur, Kristi L. Norris, Cheng-Wei Hsieh, De Huang, Nicolas Vitale, et al. “Parkin coordinates mitochondrial lipid remodeling to execute mitophagy.” Embo Rep 23, no. 12 (December 6, 2022): e55191. https://doi.org/10.15252/embr.202255191.Full Text Link to Item
-
Choi, Moon-Chang, Jiwon Jo, Myeongjin Lee, Jonggwan Park, Tso-Pang Yao, and Yoonkyung Park. “Cathelicidin-related antimicrobial peptide mediates skeletal muscle degeneration caused by injury and Duchenne muscular dystrophy in mice.” J Cachexia Sarcopenia Muscle 13, no. 6 (December 2022): 3091–3105. https://doi.org/10.1002/jcsm.13065.Full Text Open Access Copy Link to Item
-
Del Rosso, Giulia, Yari Carlomagno, Tiffany W. Todd, Caroline Y. Jones, Mercedes Prudencio, Lillian M. Daughrity, Mei Yue, et al. “HDAC6 Interacts With Poly (GA) and Modulates its Accumulation in c9FTD/ALS.” Front Cell Dev Biol 9 (2021): 809942. https://doi.org/10.3389/fcell.2021.809942.Full Text Link to Item
-
Lin, Chao-Chieh, Nathaniel W. Mabe, Yi-Tzu Lin, Wen-Hsuan Yang, Xiaohu Tang, Lisa Hong, Tianai Sun, et al. “RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence.” Cell Death Differ 27, no. 7 (July 2020): 2234–47. https://doi.org/10.1038/s41418-020-0499-y.Full Text Link to Item
-
Qiu, Weinan, Bin Wang, Yanan Gao, Yuan Tian, Meijie Tian, Yuanying Chen, Li Xu, Tso-Pang Yao, Peng Li, and Pengyuan Yang. “Targeting Histone Deacetylase 6 Reprograms Interleukin-17-Producing Helper T Cell Pathogenicity and Facilitates Immunotherapies for Hepatocellular Carcinoma.” Hepatology 71, no. 6 (June 2020): 1967–87. https://doi.org/10.1002/hep.30960.Full Text Link to Item
-
Nishimori, Shigeki, Forest Lai, Mieno Shiraishi, Tatsuya Kobayashi, Elena Kozhemyakina, Tso-Pang Yao, Andrew B. Lassar, and Henry M. Kronenberg. “PTHrP targets HDAC4 and HDAC5 to repress chondrocyte hypertrophy.” Jci Insight 4, no. 5 (March 7, 2019). https://doi.org/10.1172/jci.insight.97903.Full Text Link to Item
-
Zhang, Yingjie, Jin Yan, and Tso-Pang Yao. “Discovery of a fluorescent probe with HDAC6 selective inhibition.” Eur J Med Chem 141 (December 1, 2017): 596–602. https://doi.org/10.1016/j.ejmech.2017.10.022.Full Text Link to Item
-
Fukada, Masahide, Atsuo Nakayama, Takayoshi Mamiya, Tso-Pang Yao, and Yoshiharu Kawaguchi. “Dopaminergic abnormalities in Hdac6-deficient mice.” Neuropharmacology 110, no. Pt A (November 2016): 470–79. https://doi.org/10.1016/j.neuropharm.2016.08.018.Full Text Link to Item
-
Núñez-Andrade, Norman, Salvador Iborra, Antonio Trullo, Olga Moreno-Gonzalo, Enrique Calvo, Elena Catalán, Gaël Menasche, et al. “HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes.” J Cell Sci 129, no. 7 (April 1, 2016): 1305–11. https://doi.org/10.1242/jcs.180885.Full Text Link to Item
-
Choi, Su Jin, Hyun-Cheol Lee, Jae-Hoon Kim, Song Yi Park, Tae-Hwan Kim, Woon-Kyu Lee, Duk-Jae Jang, et al. “HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I.” Embo J 35, no. 4 (February 15, 2016): 429–42. https://doi.org/10.15252/embj.201592586.Full Text Link to Item
-
Zhang, C. W., L. Hang, T. P. Yao, and K. L. Lim. “Parkin regulation and neurodegenerative disorders.” Frontiers in Aging Neuroscience 7, no. JAN (January 1, 2016). https://doi.org/10.3389/fnagi.2015.00248.Full Text
-
Kim, Hak-June, Yoshito Nagano, Su Jin Choi, Song Yi Park, Hongtae Kim, Tso-Pang Yao, and Joo-Yong Lee. “HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation.” Biochem Biophys Res Commun 464, no. 4 (September 4, 2015): 1235–40. https://doi.org/10.1016/j.bbrc.2015.07.111.Full Text Link to Item
-
Norris, Kristi L., Rui Hao, Liang-Fu Chen, Chun-Hsiang Lai, Meghan Kapur, Peter J. Shaughnessy, Dennis Chou, et al. “Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling.” J Biol Chem 290, no. 22 (May 29, 2015): 13862–74. https://doi.org/10.1074/jbc.M114.634063.Full Text Link to Item
-
Nanduri, Priyaanka, Rui Hao, Thomas Fitzpatrick, and Tso-Pang Yao. “Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance.” J Biol Chem 290, no. 15 (April 10, 2015): 9455–64. https://doi.org/10.1074/jbc.M114.627950.Full Text Link to Item
-
Cohen, Todd J., Moon-Chang Choi, Meghan Kapur, Vitor A. Lira, Zhen Yan, and Tso-Pang Yao. “HDAC4 regulates muscle fiber type-specific gene expression programs.” Mol Cells 38, no. 4 (April 2015): 343–48. https://doi.org/10.14348/molcells.2015.2278.Full Text Link to Item
-
Lee, Joo-Yong, Yoshiharu Kawaguchi, Ming Li, Meghan Kapur, Su Jin Choi, Hak-June Kim, Song-Yi Park, Haining Zhu, and Tso-Pang Yao. “Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.” Neurodegener Dis 15, no. 6 (2015): 339–49. https://doi.org/10.1159/000437208.Full Text Link to Item
-
Peers, Chris, Prem Kumar, Chris Wyatt, Estelle Gauda, Colin Nurse, and Nanduri Prabhakar. “This volume of Advances in Experimental Medicine and Biology holds the proceedings of the XVIIIth meeting. Introduction.” Advances in Experimental Medicine and Biology 860 (January 2015): v–vi.
-
Zhang, L., S. Liu, N. Liu, Y. Zhang, M. Liu, D. Li, E. Seto, T. P. Yao, W. Shui, and J. Zhou. “Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity.” Protein and Cell 6, no. 1 (January 1, 2015): 42–54. https://doi.org/10.1007/s13238-014-0102-8.Full Text
-
Zhang, Linlin, Shanshan Liu, Ningning Liu, Yong Zhang, Min Liu, Dengwen Li, Edward Seto, Tso-Pang Yao, Wenqing Shui, and Jun Zhou. “Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity.” Protein Cell 6, no. 1 (January 2015): 42–54. https://doi.org/10.1007/s13238-014-0102-8.Full Text Link to Item
-
Lee, Joo-Yong, Meghan Kapur, Ming Li, Moon-Chang Choi, Sujin Choi, Hak-June Kim, Inhye Kim, Eunji Lee, J Paul Taylor, and Tso-Pang Yao. “MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.” J Cell Sci 127, no. Pt 22 (November 15, 2014): 4954–63. https://doi.org/10.1242/jcs.157321.Full Text Link to Item
-
Choi, Moon-Chang, Soyoung Ryu, Rui Hao, Bin Wang, Meghan Kapur, Chen-Ming Fan, and Tso-Pang Yao. “HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration.” Embo Rep 15, no. 11 (November 2014): 1175–83. https://doi.org/10.15252/embr.201439195.Full Text Link to Item
-
Wang, Bin, Ting-Yu Liu, Chun-Hsiang Lai, Yan-hua Rao, Moon-Chang Choi, Jen-Tsan Chi, Jian-wu Dai, Jeffrey C. Rathmell, and Tso-Pang Yao. “Glycolysis-dependent histone deacetylase 4 degradation regulates inflammatory cytokine production.” Mol Biol Cell 25, no. 21 (November 1, 2014): 3300–3307. https://doi.org/10.1091/mbc.E13-12-0757.Full Text Link to Item
-
Wang, Bin, Yan-Hua Rao, Makoto Inoue, Rui Hao, Chun-Hsiang Lai, David Chen, Stacey L. McDonald, et al. “Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production.” Nat Commun 5 (March 17, 2014): 3479. https://doi.org/10.1038/ncomms4479.Full Text Link to Item
-
Rao, Yanhua, Rui Hao, Bin Wang, and Tso-Pang Yao. “A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis.” Plos One 9, no. 12 (2014): e114087. https://doi.org/10.1371/journal.pone.0114087.Full Text Link to Item
-
Hao, Rui, Priyaanka Nanduri, Yanhua Rao, R Scott Panichelli, Akihiro Ito, Minoru Yoshida, and Tso-Pang Yao. “Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains.” Mol Cell 51, no. 6 (September 26, 2013): 819–28. https://doi.org/10.1016/j.molcel.2013.08.016.Full Text Link to Item
-
Kim, N. C., E. Tresse, R. M. Kolaitis, A. Molliex, R. E. Thomas, N. H. Alami, B. Wang, et al. “Erratum to: VCP Is Essential for Mitochondrial Quality Control by PINK1/Parkin and this Function Is Impaired by VCP Mutations.” Neuron 78, no. 2 (April 24, 2013): 403. https://doi.org/10.1016/j.neuron.2013.04.020.Full Text
-
Kim, Nam Chul, Emilie Tresse, Regina-Maria Kolaitis, Amandine Molliex, Ruth E. Thomas, Nael H. Alami, Bo Wang, et al. “VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations.” Neuron 78, no. 1 (April 10, 2013): 65–80. https://doi.org/10.1016/j.neuron.2013.02.029.Full Text Link to Item
-
Choi, Moon-Chang, Todd J. Cohen, Tomasa Barrientos, Bin Wang, Ming Li, Bryan J. Simmons, Jeong Soo Yang, Gregory A. Cox, Yingming Zhao, and Tso-Pang Yao. “A direct HDAC4-MAP kinase crosstalk activates muscle atrophy program.” Mol Cell 47, no. 1 (July 13, 2012): 122–32. https://doi.org/10.1016/j.molcel.2012.04.025.Full Text Link to Item
-
Lim, Kah-Leong, Xiao-Hui Ng, Lim Gui-Yin Grace, and Tso-Pang Yao. “Mitochondrial dynamics and Parkinson's disease: focus on parkin.” Antioxid Redox Signal 16, no. 9 (May 1, 2012): 935–49. https://doi.org/10.1089/ars.2011.4105.Full Text Link to Item
-
Klionsky, Daniel J., Fabio C. Abdalla, Hagai Abeliovich, Robert T. Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, et al. “Guidelines for the use and interpretation of assays for monitoring autophagy.” Autophagy 8, no. 4 (April 2012): 445–544. https://doi.org/10.4161/auto.19496.Full Text Link to Item
-
Fukada, Masahide, Atsuko Hanai, Atsuo Nakayama, Takayoshi Suzuki, Naoki Miyata, Ramona M. Rodriguiz, William C. Wetsel, Tso-Pang Yao, and Yoshiharu Kawaguchi. “Loss of deacetylation activity of Hdac6 affects emotional behavior in mice.” Plos One 7, no. 2 (2012): e30924. https://doi.org/10.1371/journal.pone.0030924.Full Text Link to Item
-
Norris, Kristi L., and Tso-Pang Yao. “Lysine modifications and autophagy.” Essays Biochem 52 (2012): 65–77. https://doi.org/10.1042/bse0520065.Full Text Link to Item
-
Kaluza, David, Jens Kroll, Sabine Gesierich, Tso-Pang Yao, Reinier A. Boon, Eduard Hergenreider, Marc Tjwa, et al. “Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin.” Embo J 30, no. 20 (August 16, 2011): 4142–56. https://doi.org/10.1038/emboj.2011.298.Full Text Link to Item
-
Yao, Tso-Pang, and Edward Seto. “The discovery of histone deacetylase.” Handb Exp Pharmacol 206 (2011): v.Link to Item
-
Simmons, Bryan J., Todd J. Cohen, Richard Bedlack, and Tso-Pang Yao. “HDACs in skeletal muscle remodeling and neuromuscular disease.” Handb Exp Pharmacol 206 (2011): 79–101. https://doi.org/10.1007/978-3-642-21631-2_5.Full Text Link to Item
-
Yao, T. P. “The role of ubiquitin in autophagy-dependent protein aggregate processing.” Genes and Cancer 1, no. 7 (December 1, 2010): 779–86. https://doi.org/10.1177/1947601910383277.Full Text
-
Lee, Joo-Yong, Yoshito Nagano, J Paul Taylor, Kah Leong Lim, and Tso-Pang Yao. “Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy.” J Cell Biol 189, no. 4 (May 17, 2010): 671–79. https://doi.org/10.1083/jcb.201001039.Full Text Link to Item
-
Lee, Joo-Yong, and Tso-Pang Yao. “Quality control autophagy: a joint effort of ubiquitin, protein deacetylase and actin cytoskeleton.” Autophagy 6, no. 4 (May 2010): 555–57. https://doi.org/10.4161/auto.6.4.11812.Full Text Open Access Copy Link to Item
-
Gao, Ya-sheng, Charlotte C. Hubbert, and Tso-Pang Yao. “The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation.” J Biol Chem 285, no. 15 (April 9, 2010): 11219–26. https://doi.org/10.1074/jbc.M109.042754.Full Text Link to Item
-
Lee, Joo-Yong, Hiroshi Koga, Yoshiharu Kawaguchi, Waixing Tang, Esther Wong, Ya-Sheng Gao, Udai B. Pandey, et al. “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy.” Embo J 29, no. 5 (March 3, 2010): 969–80. https://doi.org/10.1038/emboj.2009.405.Full Text Link to Item
-
Tresse, Emilie, Florian A. Salomons, Jouni Vesa, Laura C. Bott, Virginia Kimonis, Tso-Pang Yao, Nico P. Dantuma, and J Paul Taylor. “VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD.” Autophagy 6, no. 2 (February 2010): 217–27. https://doi.org/10.4161/auto.6.2.11014.Full Text Open Access Copy Link to Item
-
Norris, Kristi L., Joo-Yong Lee, and Tso-Pang Yao. “Acetylation goes global: the emergence of acetylation biology.” Sci Signal 2, no. 97 (November 17, 2009): pe76. https://doi.org/10.1126/scisignal.297pe76.Full Text Link to Item
-
Kozhemyakina, Elena, Todd Cohen, Tso-Pang Yao, and Andrew B. Lassar. “Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway.” Mol Cell Biol 29, no. 21 (November 2009): 5751–62. https://doi.org/10.1128/MCB.00415-09.Full Text Link to Item
-
Cohen, Todd J., Tomasa Barrientos, Zachary C. Hartman, Sean M. Garvey, Gregory A. Cox, and Tso-Pang Yao. “The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity.” Faseb J 23, no. 1 (January 2009): 99–106. https://doi.org/10.1096/fj.08-115931.Full Text Link to Item
-
Lee, Yi-Shan, Kian-Huat Lim, Xing Guo, Yoshiharu Kawaguchi, Yasheng Gao, Tomasa Barrientos, Peter Ordentlich, Xiao-Fan Wang, Christopher M. Counter, and Tso-Pang Yao. “The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis.” Cancer Res 68, no. 18 (September 15, 2008): 7561–69. https://doi.org/10.1158/0008-5472.CAN-08-0188.Full Text Link to Item
-
Kamemura, Kazuo, Akihiro Ito, Tadahiro Shimazu, Akihisa Matsuyama, Satoko Maeda, Tso-Pang Yao, Sueharu Horinouchi, Saadi Khochbin, and Minoru Yoshida. “Effects of downregulated HDAC6 expression on the proliferation of lung cancer cells.” Biochem Biophys Res Commun 374, no. 1 (September 12, 2008): 84–89. https://doi.org/10.1016/j.bbrc.2008.06.092.Full Text Link to Item
-
Shan, Bin, Tso-pang Yao, Hong T. Nguyen, Ying Zhuo, Dawn R. Levy, Ross C. Klingsberg, Hui Tao, Michael L. Palmer, Kevin N. Holder, and Joseph A. Lasky. “Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition.” J Biol Chem 283, no. 30 (July 25, 2008): 21065–73. https://doi.org/10.1074/jbc.M802786200.Full Text Link to Item
-
Cohen, T. J., M. J. Mallory, R. Strich, and T. -. P. Yao. “Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p cell integrity pathway.” Eukaryot Cell 7, no. 7 (July 2008): 1191–99. https://doi.org/10.1128/EC.00059-08.Full Text Link to Item
-
Li, Yu, Xiaowu Zhang, Roberto D. Polakiewicz, Tso-Pang Yao, and Michael J. Comb. “HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization.” J Biol Chem 283, no. 19 (May 9, 2008): 12686–90. https://doi.org/10.1074/jbc.C700185200.Full Text Link to Item
-
Gao, Ya-sheng, Charlotte C. Hubbert, Jianrong Lu, Yi-Shan Lee, Joo-Yong Lee, and Tso-Pang Yao. “Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis.” Mol Cell Biol 27, no. 24 (December 2007): 8637–47. https://doi.org/10.1128/MCB.00393-07.Full Text Link to Item
-
Cohen, Todd J., David S. Waddell, Tomasa Barrientos, Zhonghua Lu, Guoping Feng, Gregory A. Cox, Sue C. Bodine, and Tso-Pang Yao. “The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming.” J Biol Chem 282, no. 46 (November 16, 2007): 33752–59. https://doi.org/10.1074/jbc.M706268200.Full Text Link to Item
-
Bolger, Timothy A., Xuan Zhao, Todd J. Cohen, Chih-Cheng Tsai, and Tso-Pang Yao. “The neurodegenerative disease protein ataxin-1 antagonizes the neuronal survival function of myocyte enhancer factor-2.” J Biol Chem 282, no. 40 (October 5, 2007): 29186–92. https://doi.org/10.1074/jbc.M704182200.Full Text Link to Item
-
Boyault, Cyril, Yu Zhang, Sabrina Fritah, Cécile Caron, Benoit Gilquin, So Hee Kwon, Carmen Garrido, et al. “HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates.” Genes Dev 21, no. 17 (September 1, 2007): 2172–81. https://doi.org/10.1101/gad.436407.Full Text Link to Item
-
Zhang, Xiaohong, Zhigang Yuan, Yingtao Zhang, Sarah Yong, Alexis Salas-Burgos, John Koomen, Nancy Olashaw, et al. “HDAC6 modulates cell motility by altering the acetylation level of cortactin.” Mol Cell 27, no. 2 (July 20, 2007): 197–213. https://doi.org/10.1016/j.molcel.2007.05.033.Full Text Link to Item
-
Pai, Ming-Tao, Shiou-Ru Tzeng, Jeffrey J. Kovacs, Mignon A. Keaton, Shawn S-C Li, Tso-Pang Yao, and Pei Zhou. “Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin.” J Mol Biol 370, no. 2 (July 6, 2007): 290–302. https://doi.org/10.1016/j.jmb.2007.04.015.Full Text Link to Item
-
Pandey, Udai Bhan, Zhiping Nie, Yakup Batlevi, Brett A. McCray, Gillian P. Ritson, Natalia B. Nedelsky, Stephanie L. Schwartz, et al. “HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS.” Nature 447, no. 7146 (June 14, 2007): 859–63. https://doi.org/10.1038/nature05853.Full Text Link to Item
-
Tran, Andy Dong-Anh, Timothy P. Marmo, Ambar A. Salam, Sally Che, Erik Finkelstein, Rafi Kabarriti, Harry S. Xenias, et al. “HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions.” J Cell Sci 120, no. Pt 8 (April 15, 2007): 1469–79. https://doi.org/10.1242/jcs.03431.Full Text Link to Item
-
Lee, J. Y., H. J. Moon, W. K. Lee, H. J. Chun, C. W. Han, Y. -. W. Jeon, Y. Lim, et al. “Merlin facilitates ubiquitination and degradation of transactivation-responsive RNA-binding protein.” Oncogene 25, no. 8 (February 23, 2006): 1143–52. https://doi.org/10.1038/sj.onc.1209150.Full Text Link to Item
-
Kawaguchi, Yoshiharu, Akihiro Ito, Ettore Appella, and Tso-Pang Yao. “Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking.” J Biol Chem 281, no. 3 (January 20, 2006): 1394–1400. https://doi.org/10.1074/jbc.M505772200.Full Text Link to Item
-
Chuang, Hsiao-Ching, Ching-Wen Chang, Geen-Dong Chang, Tso-Pang Yao, and Hungwen Chen. “Histone deacetylase 3 binds to and regulates the GCMa transcription factor.” Nucleic Acids Res 34, no. 5 (2006): 1459–69. https://doi.org/10.1093/nar/gkl048.Full Text Link to Item
-
Bolger, Timothy A., and Tso-Pang Yao. “Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death.” J Neurosci 25, no. 41 (October 12, 2005): 9544–53. https://doi.org/10.1523/JNEUROSCI.1826-05.2005.Full Text Link to Item
-
Murphy, Patrick J. M., Yoshihiro Morishima, Jeffrey J. Kovacs, Tso-Pang Yao, and William B. Pratt. “Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone.” J Biol Chem 280, no. 40 (October 7, 2005): 33792–99. https://doi.org/10.1074/jbc.M506997200.Full Text Link to Item
-
Chang, Ching-Wen, Hsiao-Ching Chuang, Chenchou Yu, Tso-Pang Yao, and Hungwen Chen. “Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa.” Mol Cell Biol 25, no. 19 (October 2005): 8401–14. https://doi.org/10.1128/MCB.25.19.8401-8414.2005.Full Text Link to Item
-
Meloni, Alison R., Chun-Hsiang Lai, Tso-Pang Yao, and Joseph R. Nevins. “A mechanism of COOH-terminal binding protein-mediated repression.” Mol Cancer Res 3, no. 10 (October 2005): 575–83. https://doi.org/10.1158/1541-7786.MCR-05-0088.Full Text Link to Item
-
Zhao, Xuan, Thomas Sternsdorf, Timothy A. Bolger, Ronald M. Evans, and Tso-Pang Yao. “Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications.” Mol Cell Biol 25, no. 19 (October 2005): 8456–64. https://doi.org/10.1128/MCB.25.19.8456-8464.2005.Full Text Link to Item
-
Kovacs, Jeffrey J., Patrick J. M. Murphy, Stéphanie Gaillard, Xuan Zhao, June-Tai Wu, Christopher V. Nicchitta, Minoru Yoshida, David O. Toft, William B. Pratt, and Tso-Pang Yao. “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor.” Mol Cell 18, no. 5 (May 27, 2005): 601–7. https://doi.org/10.1016/j.molcel.2005.04.021.Full Text Link to Item
-
Marcus, Adam I., Jun Zhou, Aurora O’Brate, Ernest Hamel, Jason Wong, Michael Nivens, Adel El-Naggar, Tso-Pang Yao, Fadlo R. Khuri, and Paraskevi Giannakakou. “The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase.” Cancer Res 65, no. 9 (May 1, 2005): 3883–93. https://doi.org/10.1158/0008-5472.CAN-04-3757.Full Text Link to Item
-
Fu, Maofu, Mahadev Rao, Toula Bouras, Chenguang Wang, Kongming Wu, Xueping Zhang, Zhiping Li, Tso-Pang Yao, and Richard G. Pestell. “Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment.” J Biol Chem 280, no. 17 (April 29, 2005): 16934–41. https://doi.org/10.1074/jbc.M500403200.Full Text Link to Item
-
Yang, Chih-Sheng, Chenchou Yu, Hsiao-Ching Chuang, Ching-Wen Chang, Geen-Dong Chang, Tso-Pang Yao, and Hungwen Chen. “FBW2 targets GCMa to the ubiquitin-proteasome degradation system.” J Biol Chem 280, no. 11 (March 18, 2005): 10083–90. https://doi.org/10.1074/jbc.M413986200.Full Text Link to Item
-
Cohen, Todd, and Tso-Pang Yao. “AcK-knowledge reversible acetylation.” Sci Stke 2004, no. 245 (August 3, 2004): pe42. https://doi.org/10.1126/stke.2452004pe42.Full Text Link to Item
-
Brush, Matthew H., Amaris Guardiola, John H. Connor, Tso-Pang Yao, and Shirish Shenolikar. “Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases.” J Biol Chem 279, no. 9 (February 27, 2004): 7685–91. https://doi.org/10.1074/jbc.M310997200.Full Text Link to Item
-
Kovacs, Jeffery J., Charlotte Hubbert, and Tso-Pang Yao. “The HDAC complex and cytoskeleton.” Novartis Found Symp 259 (2004): 170–77.Link to Item
-
Kawaguchi, Yoshiharu, Jeffrey J. Kovacs, Adam McLaurin, Jeffery M. Vance, Akihiro Ito, and Tso Pang Yao. “The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress.” Cell 115, no. 6 (December 12, 2003): 727–38. https://doi.org/10.1016/s0092-8674(03)00939-5.Full Text Link to Item
-
Bradney, Curtis, Mark Hjelmeland, Yasuhiko Komatsu, Minoru Yoshida, Tso-Pang Yao, and Yuan Zhuang. “Regulation of E2A activities by histone acetyltransferases in B lymphocyte development.” J Biol Chem 278, no. 4 (January 24, 2003): 2370–76. https://doi.org/10.1074/jbc.M211464200.Full Text Link to Item
-
Ito, Akihiro, Yoshiharu Kawaguchi, Chun-Hsiang Lai, Jeffrey J. Kovacs, Yuichiro Higashimoto, Ettore Appella, and Tso-Pang Yao. “MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation.” Embo J 21, no. 22 (November 15, 2002): 6236–45. https://doi.org/10.1093/emboj/cdf616.Full Text Link to Item
-
Hubbert, Charlotte, Amaris Guardiola, Rong Shao, Yoshiharu Kawaguchi, Akihiro Ito, Andrew Nixon, Minoru Yoshida, Xiao-Fan Wang, and Tso-Pang Yao. “HDAC6 is a microtubule-associated deacetylase.” Nature 417, no. 6887 (May 23, 2002): 455–58. https://doi.org/10.1038/417455a.Full Text Link to Item
-
Guardiola, Amaris R., and Tso-Pang Yao. “Molecular cloning and characterization of a novel histone deacetylase HDAC10.” J Biol Chem 277, no. 5 (February 1, 2002): 3350–56. https://doi.org/10.1074/jbc.M109861200.Full Text Link to Item
-
Zhao, X., A. Ito, C. D. Kane, T. S. Liao, T. A. Bolger, S. M. Lemrow, A. R. Means, and T. P. Yao. “The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking.” J Biol Chem 276, no. 37 (September 14, 2001): 35042–48. https://doi.org/10.1074/jbc.M105086200.Full Text Link to Item
-
Mullen, A. C., F. A. High, A. S. Hutchins, H. W. Lee, A. V. Villarino, D. M. Livingston, A. L. Kung, et al. “Role of T-bet in commitment of TH1 cells before IL-12-dependent selection.” Science 292, no. 5523 (June 8, 2001): 1907–10. https://doi.org/10.1126/science.1059835.Full Text Link to Item
-
Ito, A., C. H. Lai, X. Zhao, S. Saito, M. H. Hamilton, E. Appella, and T. P. Yao. “p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2.” Embo J 20, no. 6 (March 15, 2001): 1331–40. https://doi.org/10.1093/emboj/20.6.1331.Full Text Link to Item
-
Falvo, J. V., B. M. Brinkman, A. V. Tsytsykova, E. Y. Tsai, T. P. Yao, A. L. Kung, and A. E. Goldfeld. “A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor alpha gene expression.” Proc Natl Acad Sci U S A 97, no. 8 (April 11, 2000): 3925–29. https://doi.org/10.1073/pnas.97.8.3925.Full Text Link to Item
-
Kung, A. L., V. I. Rebel, R. T. Bronson, L. E. Ch’ng, C. A. Sieff, D. M. Livingston, and T. P. Yao. “Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP.” Genes Dev 14, no. 3 (February 1, 2000): 272–77.Link to Item
-
Tsai, C. C., H. Y. Kao, T. P. Yao, M. McKeown, and R. M. Evans. “SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development.” Mol Cell 4, no. 2 (August 1999): 175–86. https://doi.org/10.1016/s1097-2765(00)80365-2.Full Text Link to Item
-
Price, E. R., H. F. Ding, T. Badalian, S. Bhattacharya, C. Takemoto, T. P. Yao, T. J. Hemesath, and D. E. Fisher. “Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia.” J Biol Chem 273, no. 29 (July 17, 1998): 17983–86. https://doi.org/10.1074/jbc.273.29.17983.Full Text Link to Item
-
Kawasaki, H., R. Eckner, T. P. Yao, K. Taira, R. Chiu, D. M. Livingston, and K. K. Yokoyama. “Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation.” Nature 393, no. 6682 (May 21, 1998): 284–89. https://doi.org/10.1038/30538.Full Text Link to Item
-
Yao, T. P., S. P. Oh, M. Fuchs, N. D. Zhou, L. E. Ch’ng, D. Newsome, R. T. Bronson, E. Li, D. M. Livingston, and R. Eckner. “Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300.” Cell 93, no. 3 (May 1, 1998): 361–72. https://doi.org/10.1016/s0092-8674(00)81165-4.Full Text Link to Item
-
Eckner, R., T. P. Yao, E. Oldread, and D. M. Livingston. “Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation.” Genes Dev 10, no. 19 (October 1, 1996): 2478–90. https://doi.org/10.1101/gad.10.19.2478.Full Text Link to Item
-
Yao, T. P., G. Ku, N. Zhou, R. Scully, and D. M. Livingston. “The nuclear hormone receptor coactivator SRC-1 is a specific target of p300.” Proc Natl Acad Sci U S A 93, no. 20 (October 1, 1996): 10626–31. https://doi.org/10.1073/pnas.93.20.10626.Full Text Link to Item
-
No, D., T. P. Yao, and R. M. Evans. “Ecdysone-inducible gene expression in mammalian cells and transgenic mice.” Proc Natl Acad Sci U S A 93, no. 8 (April 16, 1996): 3346–51. https://doi.org/10.1073/pnas.93.8.3346.Full Text Link to Item
-
Zelhof, A. C., T. P. Yao, J. D. Chen, R. M. Evans, and M. McKeown. “Seven-up inhibits ultraspiracle-based signaling pathways in vitro and in vivo.” Mol Cell Biol 15, no. 12 (December 1995): 6736–45. https://doi.org/10.1128/MCB.15.12.6736.Full Text Link to Item
-
Zelhof, A. C., T. P. Yao, R. M. Evans, and M. McKeown. “Identification and characterization of a Drosophila nuclear receptor with the ability to inhibit the ecdysone response.” Proc Natl Acad Sci U S A 92, no. 23 (November 7, 1995): 10477–81. https://doi.org/10.1073/pnas.92.23.10477.Full Text Link to Item
-
Yao, T. P., B. M. Forman, Z. Jiang, L. Cherbas, J. D. Chen, M. McKeown, P. Cherbas, and R. M. Evans. “Functional ecdysone receptor is the product of EcR and Ultraspiracle genes.” Nature 366, no. 6454 (December 2, 1993): 476–79. https://doi.org/10.1038/366476a0.Full Text Link to Item
-
Yao, T. P., W. A. Segraves, A. E. Oro, M. McKeown, and R. M. Evans. “Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation.” Cell 71, no. 1 (October 2, 1992): 63–72. https://doi.org/10.1016/0092-8674(92)90266-f.Full Text Link to Item
-
Voss, J. W., T. P. Yao, and M. G. Rosenfeld. “Alternative translation initiation site usage results in two structurally distinct forms of Pit-1.” J Biol Chem 266, no. 20 (July 15, 1991): 12832–35.Link to Item
-
-
Book Sections
-
Lim, K. L., H. Y. Chan, G. G. Y. Lim, and T. P. Yao. “Mitophagy and neurodegeneration.” In Autophagy and Signaling, 175–92, 2017. https://doi.org/10.1201/9781315120638.Full Text
-
Lim, K. L., D. S. K. Chua, X. G. Palau, and T. P. Yao. “PARK2 Induces Autophagy Removal of Impaired Mitochondria via Ubiquitination.” In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 4:175–88, 2014. https://doi.org/10.1016/B978-0-12-405528-5.00011-0.Full Text
-
-
Conference Papers
-
Lin, Chao-Chieh, Mayumi Kitagawa, Xiaohu Tang, Ming-Hsin Hou, Jianli Wu, Dan Chen Qu, Vinayaka Srinivas, et al. “CoA synthase regulates mitotic fidelity via CBP-mediated acetylation.” In Nat Commun, 9:1039, 2018. https://doi.org/10.1038/s41467-018-03422-6.Full Text Open Access Copy Link to Item
-
Yao, T. P., and J. Y. Lee. “Protein deacetylase HDAC6 in protein aggregate clearance and neurodegeneration.” In Journal of Neurochemistry, 104:94–94. BLACKWELL PUBLISHING, 2008.Link to Item
-
Yao, T. P., and J. Y. Lee. “HDAC6 and the clearance of toxic protein aggregates in neurodegenerative disease.” In Journal of Neurochemistry, 104:21–21. BLACKWELL PUBLISHING, 2008.Link to Item
-
Gao, Y., C. C. Hubbert, Y. Lee, J. K. Kovacs, J. Lu, and T. Yao. “The Deacetylase HDAC6 Regulates Growth Factor Induced Actin Remodeling, Macropinocytosis, and Cell Motility.” In Molecular Biology of the Cell, Vol. 17. AMER SOC CELL BIOLOGY, 2006.Link to Item
-
-
- Teaching & Mentoring
-
Recent Courses
- I&E 835: Innovations in Drug Development 2023
- MOLCAN 818: Molecular Mechanisms of Oncogenesis 2023
- PHARM 818: Molecular Mechanisms of Oncogenesis 2023
- PHARM 835: Innovations in Drug Development 2023
- I&E 835: Innovations in Drug Development 2022
- MOLCAN 818: Molecular Mechanisms of Oncogenesis 2022
- PHARM 394: Research Independent Study 2022
- PHARM 818: Molecular Mechanisms of Oncogenesis 2022
- PHARM 835: Innovations in Drug Development 2022
- I&E 835: Innovations in Drug Development 2021
- MOLCAN 818: Molecular Mechanisms of Oncogenesis 2021
- PHARM 393: Research Independent Study 2021
- PHARM 394: Research Independent Study 2021
- PHARM 818: Molecular Mechanisms of Oncogenesis 2021
- PHARM 835: Innovations in Drug Development 2021
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.