Skip to main content
Journal cover image

Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues.

Publication ,  Journal Article
Wang, Y-C; Dozier, JK; Beese, LS; Distefano, MD
Published in: ACS Chem Biol
August 15, 2014

Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequent visualization with streptavidin-AP. Screening of the CVa2X and CCa2X libraries with Rattus norvegicus PFTase revealed reaction by many known recognition sequences as well as numerous unknown ones. Some of the latter occur in the genomes of bacteria and viruses and may be important for pathogenesis, suggesting new targets for therapeutic intervention. Screening of the CVa2X library with alkyne-functionalized isoprenoid substrates showed that those prepared from C10 or C15 precursors gave similar results, whereas the analogue synthesized from a C5 unit gave a different pattern of reactivity. Lastly, the substrate specificities of PFTases from three organisms (R. norvegicus, Saccharomyces cerevisiae, and Candida albicans) were compared using CVa2X libraries. R. norvegicus PFTase was found to share more peptide substrates with S. cerevisiae PFTase than with C. albicans PFTase. In general, this method is a highly efficient strategy for rapidly probing the specificity of this important enzyme.

Duke Scholars

Published In

ACS Chem Biol

DOI

EISSN

1554-8937

Publication Date

August 15, 2014

Volume

9

Issue

8

Start / End Page

1726 / 1735

Location

United States

Related Subject Headings

  • Substrate Specificity
  • Rats
  • Polyisoprenyl Phosphates
  • Peptide Library
  • Organic Chemistry
  • Animals
  • Alkyl and Aryl Transferases
  • 34 Chemical sciences
  • 31 Biological sciences
  • 06 Biological Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, Y.-C., Dozier, J. K., Beese, L. S., & Distefano, M. D. (2014). Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues. ACS Chem Biol, 9(8), 1726–1735. https://doi.org/10.1021/cb5002312
Wang, Yen-Chih, Jonathan K. Dozier, Lorena S. Beese, and Mark D. Distefano. “Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues.ACS Chem Biol 9, no. 8 (August 15, 2014): 1726–35. https://doi.org/10.1021/cb5002312.
Wang Y-C, Dozier JK, Beese LS, Distefano MD. Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues. ACS Chem Biol. 2014 Aug 15;9(8):1726–35.
Wang, Yen-Chih, et al. “Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues.ACS Chem Biol, vol. 9, no. 8, Aug. 2014, pp. 1726–35. Pubmed, doi:10.1021/cb5002312.
Wang Y-C, Dozier JK, Beese LS, Distefano MD. Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues. ACS Chem Biol. 2014 Aug 15;9(8):1726–1735.
Journal cover image

Published In

ACS Chem Biol

DOI

EISSN

1554-8937

Publication Date

August 15, 2014

Volume

9

Issue

8

Start / End Page

1726 / 1735

Location

United States

Related Subject Headings

  • Substrate Specificity
  • Rats
  • Polyisoprenyl Phosphates
  • Peptide Library
  • Organic Chemistry
  • Animals
  • Alkyl and Aryl Transferases
  • 34 Chemical sciences
  • 31 Biological sciences
  • 06 Biological Sciences